预测垂直植入式准分子晶体眼球的穹窿。

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY Journal of cataract and refractive surgery Pub Date : 2025-01-01 DOI:10.1097/j.jcrs.0000000000001556
Ryuichi Shimada, Satoshi Katagiri, Hiroshi Horiguchi, Tadashi Nakano, Yoshihiro Kitazawa
{"title":"预测垂直植入式准分子晶体眼球的穹窿。","authors":"Ryuichi Shimada, Satoshi Katagiri, Hiroshi Horiguchi, Tadashi Nakano, Yoshihiro Kitazawa","doi":"10.1097/j.jcrs.0000000000001556","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To design formulas for predicting postoperative vaults in vertical implantable collamer lens (ICL) implantation and to achieve more precise predictions using machine learning models.</p><p><strong>Design: </strong>Retrospective, observational study.</p><p><strong>Setting: </strong>Eye Clinic Tokyo.</p><p><strong>Methods: </strong>We retrospectively reviewed the medical records of 720 eyes in 408 patients who underwent vertical ICL implantation. The data included age, sex, refractions, anterior segment biometric data, and surgical records. We designed 3 formulas (named V1 to V3 formulas) using multiple linear regression analysis and tested 4 machine learning models.</p><p><strong>Results: </strong>Predicted vaults by V1 to V3 formulas were 444.17 ± 93.83 μm, 444.08 ± 98.64 μm, and 444.27 ± 108.81 μm, with a mean absolute error of 127.97 ± 107.92 μm, 126.41 ± 105.86 μm, and 122.90 ± 103.00 μm, respectively. There were no significant differences in error among the V1 to V3 formulas, despite the fact that the V1 and V2 formulas referred to limited parameters (3 and 4, respectively) and the V3 formula referred to all 12 parameters. 2 of 4 machine learning models-Extreme Gradient Boosting and Random Forest Regressor-showed better performance in predicted vaults: 444.52 ± 120.51 μm and 446.00 ± 102.55 μm, and mean absolute error: 118.31 ± 100.55 μm and 118.63 ± 99.34 μm, respectively.</p><p><strong>Conclusions: </strong>This is the first study to design V1 to V3 formulas for vertical ICL implantation. The V1 and V2 formulas exhibited good performance despite the limited parameters. In addition, 2 of the 4 machine learning models predicted more precise results.</p>","PeriodicalId":15214,"journal":{"name":"Journal of cataract and refractive surgery","volume":" ","pages":"45-52"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of vaults in eyes with vertical implantable collamer lens implantation.\",\"authors\":\"Ryuichi Shimada, Satoshi Katagiri, Hiroshi Horiguchi, Tadashi Nakano, Yoshihiro Kitazawa\",\"doi\":\"10.1097/j.jcrs.0000000000001556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To design formulas for predicting postoperative vaults in vertical implantable collamer lens (ICL) implantation and to achieve more precise predictions using machine learning models.</p><p><strong>Design: </strong>Retrospective, observational study.</p><p><strong>Setting: </strong>Eye Clinic Tokyo.</p><p><strong>Methods: </strong>We retrospectively reviewed the medical records of 720 eyes in 408 patients who underwent vertical ICL implantation. The data included age, sex, refractions, anterior segment biometric data, and surgical records. We designed 3 formulas (named V1 to V3 formulas) using multiple linear regression analysis and tested 4 machine learning models.</p><p><strong>Results: </strong>Predicted vaults by V1 to V3 formulas were 444.17 ± 93.83 μm, 444.08 ± 98.64 μm, and 444.27 ± 108.81 μm, with a mean absolute error of 127.97 ± 107.92 μm, 126.41 ± 105.86 μm, and 122.90 ± 103.00 μm, respectively. There were no significant differences in error among the V1 to V3 formulas, despite the fact that the V1 and V2 formulas referred to limited parameters (3 and 4, respectively) and the V3 formula referred to all 12 parameters. 2 of 4 machine learning models-Extreme Gradient Boosting and Random Forest Regressor-showed better performance in predicted vaults: 444.52 ± 120.51 μm and 446.00 ± 102.55 μm, and mean absolute error: 118.31 ± 100.55 μm and 118.63 ± 99.34 μm, respectively.</p><p><strong>Conclusions: </strong>This is the first study to design V1 to V3 formulas for vertical ICL implantation. The V1 and V2 formulas exhibited good performance despite the limited parameters. In addition, 2 of the 4 machine learning models predicted more precise results.</p>\",\"PeriodicalId\":15214,\"journal\":{\"name\":\"Journal of cataract and refractive surgery\",\"volume\":\" \",\"pages\":\"45-52\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cataract and refractive surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/j.jcrs.0000000000001556\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cataract and refractive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.jcrs.0000000000001556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:设计用于预测立式可植入角膜接触镜(ICL)植入术后穹窿的公式,并利用机器学习模型实现更精确的预测:设计:回顾性观察研究:XXXX(匿名审查):我们回顾性审查了 408 名接受垂直 ICL 植入术的患者的 720 只眼睛的医疗记录。数据包括年龄、性别、屈光度、眼前节生物测量数据和手术记录。我们利用多元线性回归分析设计了三个公式(命名为 V1-V3 公式),并测试了四个机器学习模型:V1-V3公式预测的穹窿分别为444.17 ± 93.83 μm、444.08 ± 98.64 μm和444.27 ± 108.81 μm,平均绝对误差分别为127.97 ± 107.92、126.41 ± 105.86和122.90 ± 103.00 μm。尽管 V1 和 V2 公式涉及的参数有限(分别为 3 个和 4 个),而 V3 公式涉及全部 12 个参数,但 V1-V3 公式之间的误差没有明显差异。在四个机器学习模型中,XGBoost 和 Random Forest Regressor 这两个模型在预测拱顶方面表现较好:444.52 ± 120.51 和 446.00 ± 102.55 μm,平均绝对误差为 118.31 ± 100.55 和 446.00 ± 102.55 μm:结论:这是首次为垂直 ICL 植入设计 V1-V3 公式的研究。尽管参数有限,但 V1 和 V2 配方表现出了良好的性能。此外,在四个机器学习模型中,有两个模型预测出了更精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of vaults in eyes with vertical implantable collamer lens implantation.

Purpose: To design formulas for predicting postoperative vaults in vertical implantable collamer lens (ICL) implantation and to achieve more precise predictions using machine learning models.

Design: Retrospective, observational study.

Setting: Eye Clinic Tokyo.

Methods: We retrospectively reviewed the medical records of 720 eyes in 408 patients who underwent vertical ICL implantation. The data included age, sex, refractions, anterior segment biometric data, and surgical records. We designed 3 formulas (named V1 to V3 formulas) using multiple linear regression analysis and tested 4 machine learning models.

Results: Predicted vaults by V1 to V3 formulas were 444.17 ± 93.83 μm, 444.08 ± 98.64 μm, and 444.27 ± 108.81 μm, with a mean absolute error of 127.97 ± 107.92 μm, 126.41 ± 105.86 μm, and 122.90 ± 103.00 μm, respectively. There were no significant differences in error among the V1 to V3 formulas, despite the fact that the V1 and V2 formulas referred to limited parameters (3 and 4, respectively) and the V3 formula referred to all 12 parameters. 2 of 4 machine learning models-Extreme Gradient Boosting and Random Forest Regressor-showed better performance in predicted vaults: 444.52 ± 120.51 μm and 446.00 ± 102.55 μm, and mean absolute error: 118.31 ± 100.55 μm and 118.63 ± 99.34 μm, respectively.

Conclusions: This is the first study to design V1 to V3 formulas for vertical ICL implantation. The V1 and V2 formulas exhibited good performance despite the limited parameters. In addition, 2 of the 4 machine learning models predicted more precise results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
14.30%
发文量
259
审稿时长
8.5 weeks
期刊介绍: The Journal of Cataract & Refractive Surgery (JCRS), a preeminent peer-reviewed monthly ophthalmology publication, is the official journal of the American Society of Cataract and Refractive Surgery (ASCRS) and the European Society of Cataract and Refractive Surgeons (ESCRS). JCRS publishes high quality articles on all aspects of anterior segment surgery. In addition to original clinical studies, the journal features a consultation section, practical techniques, important cases, and reviews as well as basic science articles.
期刊最新文献
Effect of a Topical Antibiotic and Povidone-Iodine Versus Povidone Iodine Alone on Conjunctival Flora: A Systematic Review and Meta-Analysis. In vivo capsular bag size in children with congenital cataract: Implications for placement of Intraocular Lens. Late refractive change after cataract extraction and toric intraocular lens implantation. Novel Software Program to Improve Biometry Measurements Obtained by an Optical Low Coherence Reflectometry Biometer. Visual Outcomes following implantation of a non-diffractive extended depth of focus Intraocular Lens in patients with early dry macular degeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1