蜡样芽孢杆菌 GX7 利用有机废物生产生物表面活性剂及其在碳氢化合物污染环境修复中的应用。

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY World journal of microbiology & biotechnology Pub Date : 2024-10-03 DOI:10.1007/s11274-024-04115-7
Yunyun Zhang, Jin Gao, Qintong Li, Jingjing Yang, Yu Gao, Jianliang Xue, Lin Li, Yiting Ji
{"title":"蜡样芽孢杆菌 GX7 利用有机废物生产生物表面活性剂及其在碳氢化合物污染环境修复中的应用。","authors":"Yunyun Zhang, Jin Gao, Qintong Li, Jingjing Yang, Yu Gao, Jianliang Xue, Lin Li, Yiting Ji","doi":"10.1007/s11274-024-04115-7","DOIUrl":null,"url":null,"abstract":"<p><p>The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"334"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosurfactant production by Bacillus cereus GX7 utilizing organic waste and its application in the remediation of hydrocarbon-contaminated environments.\",\"authors\":\"Yunyun Zhang, Jin Gao, Qintong Li, Jingjing Yang, Yu Gao, Jianliang Xue, Lin Li, Yiting Ji\",\"doi\":\"10.1007/s11274-024-04115-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"334\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04115-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04115-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用生物表面活性剂是一种很有前景的治理环境中碳氢化合物污染的技术。本研究评估了高效生物表面活性剂菌株--蜡样芽孢杆菌 GX7 从工业和农业有机废物中生产生物表面活性剂的能力。蜡样芽孢杆菌 GX7 对油溶性有机废物的利用能力较差,但能有效利用淀粉水解物和麦麸汁等水溶性有机废物作为碳源,提高生物表面活性剂的产量。这大大提高了表面张力和乳化指数。玉米浸出液也是蜡样芽孢杆菌 GX7 生产生物表面活性剂的有效氮源。蜡样芽孢杆菌 GX7 菌株生产的生物表面活性剂对含油沙滩沙有修复作用,但略逊于化学表面活性剂。接种蜡样芽孢杆菌 GX7(70.36%)或其发酵液(94.38%)可有效提高受污染海水中柴油的降解效率,超过本地降解菌处理方法(57.62%)。此外,接种蜡样芽孢杆菌 GX7 的发酵液可显著改善群落结构,提高海水中假单胞菌和 Stenotrophomonas 等功能菌的丰度。这些研究结果表明,蜡样芽孢杆菌 GX7 是对石油碳氢化合物进行生物修复的一种有前途的候选菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biosurfactant production by Bacillus cereus GX7 utilizing organic waste and its application in the remediation of hydrocarbon-contaminated environments.

The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
期刊最新文献
Antifungal efficacy and biofumigation potential of hydrophobic deep eutectic solvents: Postharvest treatment against Monilinia fructicola and Botrytis Cinerea. Biofilm and Extracellular Polymeric Substance (EPS) synergy: Revealing Staphylococcus's role in nitrate bioremediation. Research progress on the function and regulatory pathways of amino acid permeases in fungi. Synergistic effects of gamma irradiation/salmide®, a sodium chlorite-based oxy-halogen, on microbiological control and the shelf life of chicken breasts. Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1