评估作为鸡疫苗载体的淡布苏病毒单轮感染颗粒。

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY Veterinary microbiology Pub Date : 2024-09-28 DOI:10.1016/j.vetmic.2024.110270
Yunzhen Huang , Zhe Liu , Junqin Zhang , Jiawen Dong , Linlin Li , Yong Xiang , Ruihuan Kuang , Shimin Gao , Minhua Sun , Yongjie Liu
{"title":"评估作为鸡疫苗载体的淡布苏病毒单轮感染颗粒。","authors":"Yunzhen Huang ,&nbsp;Zhe Liu ,&nbsp;Junqin Zhang ,&nbsp;Jiawen Dong ,&nbsp;Linlin Li ,&nbsp;Yong Xiang ,&nbsp;Ruihuan Kuang ,&nbsp;Shimin Gao ,&nbsp;Minhua Sun ,&nbsp;Yongjie Liu","doi":"10.1016/j.vetmic.2024.110270","DOIUrl":null,"url":null,"abstract":"<div><div>Orthoflaviviruses are single-stranded RNA viruses characterized by highly efficient self-amplification of RNA in host cells, which makes them attractive vehicles for vaccines. Numerous preclinical and clinical studies have demonstrated the efficacy and safety of orthoflavivirus replicon vectors for vaccine development. In this study, we constructed Tembusu virus (TMUV) replicon-based single-round infectious particles (SRIPs) as vaccine development platform. To evaluate the potential of TMUV SRIPs as vaccines, we generated SRIPs that express the heterologous Fowl adenovirus 4 (FAdV-4) fiber2 protein and fiber2 head domain, named TMUVRP-fiber2 and TMUVRP-fiber2H, respectively. To assess the immunogenicity of the TMUV SRIPs, SPF chicks were intramuscularly inoculated twice. Our results showed that the TMUVRP-fiber2 vaccines elicited high levels of neutralizing antibodies. Challenge experiments showed that TMUVRP-fiber2 provided full protection against virulent FAdV-4 and significantly reduced viral shedding. Moreover, the immunogenicity of TMUVRP-fiber2H was significantly lower than that of TMUVRP-fiber2, which was reflected in the neutralizing antibody titer, survival rate, and virus shedding after challenge. Therefore, our results suggested that TMUV SRIPs are a promising novel platform for the development of vaccines for existing and emerging poultry diseases.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110270"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Tembusu virus single-round infectious particle as vaccine vector in chickens\",\"authors\":\"Yunzhen Huang ,&nbsp;Zhe Liu ,&nbsp;Junqin Zhang ,&nbsp;Jiawen Dong ,&nbsp;Linlin Li ,&nbsp;Yong Xiang ,&nbsp;Ruihuan Kuang ,&nbsp;Shimin Gao ,&nbsp;Minhua Sun ,&nbsp;Yongjie Liu\",\"doi\":\"10.1016/j.vetmic.2024.110270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Orthoflaviviruses are single-stranded RNA viruses characterized by highly efficient self-amplification of RNA in host cells, which makes them attractive vehicles for vaccines. Numerous preclinical and clinical studies have demonstrated the efficacy and safety of orthoflavivirus replicon vectors for vaccine development. In this study, we constructed Tembusu virus (TMUV) replicon-based single-round infectious particles (SRIPs) as vaccine development platform. To evaluate the potential of TMUV SRIPs as vaccines, we generated SRIPs that express the heterologous Fowl adenovirus 4 (FAdV-4) fiber2 protein and fiber2 head domain, named TMUVRP-fiber2 and TMUVRP-fiber2H, respectively. To assess the immunogenicity of the TMUV SRIPs, SPF chicks were intramuscularly inoculated twice. Our results showed that the TMUVRP-fiber2 vaccines elicited high levels of neutralizing antibodies. Challenge experiments showed that TMUVRP-fiber2 provided full protection against virulent FAdV-4 and significantly reduced viral shedding. Moreover, the immunogenicity of TMUVRP-fiber2H was significantly lower than that of TMUVRP-fiber2, which was reflected in the neutralizing antibody titer, survival rate, and virus shedding after challenge. Therefore, our results suggested that TMUV SRIPs are a promising novel platform for the development of vaccines for existing and emerging poultry diseases.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110270\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037811352400292X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037811352400292X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

正黄病毒是单链 RNA 病毒,其特点是 RNA 在宿主细胞中的高效自我扩增,这使它们成为极具吸引力的疫苗载体。大量临床前和临床研究都证明了正黄病毒复制载体用于疫苗开发的有效性和安全性。在本研究中,我们构建了基于坦布苏病毒(TMUV)复制子的单轮感染性颗粒(SRIPs)作为疫苗开发平台。为了评估TMUV SRIPs作为疫苗的潜力,我们生成了表达异源鸡腺病毒4(FAdV-4)纤维2蛋白和纤维2头部结构域的SRIPs,分别命名为TMUVRP-fiber2和TMUVRP-fiber2H。为了评估TMUV SRIPs的免疫原性,对SPF雏鸡进行了两次肌肉注射。结果表明,TMUVRP-纤维2疫苗可激发高水平的中和抗体。挑战实验表明,TMUVRP-纤维2对FAdV-4病毒提供了全面的保护,并显著减少了病毒的脱落。此外,TMUVRP-fiber2H 的免疫原性明显低于 TMUVRP-fiber2,这反映在挑战后的中和抗体滴度、存活率和病毒脱落上。因此,我们的研究结果表明,TMUV SRIPs 是一种很有前景的新型平台,可用于现有和新出现的家禽疾病疫苗的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Tembusu virus single-round infectious particle as vaccine vector in chickens
Orthoflaviviruses are single-stranded RNA viruses characterized by highly efficient self-amplification of RNA in host cells, which makes them attractive vehicles for vaccines. Numerous preclinical and clinical studies have demonstrated the efficacy and safety of orthoflavivirus replicon vectors for vaccine development. In this study, we constructed Tembusu virus (TMUV) replicon-based single-round infectious particles (SRIPs) as vaccine development platform. To evaluate the potential of TMUV SRIPs as vaccines, we generated SRIPs that express the heterologous Fowl adenovirus 4 (FAdV-4) fiber2 protein and fiber2 head domain, named TMUVRP-fiber2 and TMUVRP-fiber2H, respectively. To assess the immunogenicity of the TMUV SRIPs, SPF chicks were intramuscularly inoculated twice. Our results showed that the TMUVRP-fiber2 vaccines elicited high levels of neutralizing antibodies. Challenge experiments showed that TMUVRP-fiber2 provided full protection against virulent FAdV-4 and significantly reduced viral shedding. Moreover, the immunogenicity of TMUVRP-fiber2H was significantly lower than that of TMUVRP-fiber2, which was reflected in the neutralizing antibody titer, survival rate, and virus shedding after challenge. Therefore, our results suggested that TMUV SRIPs are a promising novel platform for the development of vaccines for existing and emerging poultry diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
期刊最新文献
Dihydrolipoamide acetyltransferase is a key factor mediating adhesion and invasion of host cells by Mycoplasma synoviae Chlamydia psittaci infection induces IFN-I and IL-1β through the cGAS-STING-IRF3/NLRP3 pathway via mitochondrial oxidative stress in human macrophages Type I-E CRISPR-Cas system regulates fimZY and T3SS1 genes expression in Salmonella enterica serovar Pullorum Characteristics of maternal antibodies transferred to foals raised through maternal equine rotavirus A vaccination The C3d-fused Porcine circovirus type 2d virus-like particle induced early and enhanced immune response and protected pigs against challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1