Judith F. Kribelbauer-Swietek, Olga Pushkarev, Vincent Gardeux, Katerina Faltejskova, Julie Russeil, Guido van Mierlo, Bart Deplancke
{"title":"内涵转录因子建立合作环境并介导增强子交流","authors":"Judith F. Kribelbauer-Swietek, Olga Pushkarev, Vincent Gardeux, Katerina Faltejskova, Julie Russeil, Guido van Mierlo, Bart Deplancke","doi":"10.1038/s41588-024-01892-7","DOIUrl":null,"url":null,"abstract":"Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, ‘context-only’ TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, ‘context-initiator’ TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity. This study identifies context-only transcription factors (TFs), a TF class that enhances DNA accessibility initiated by cell type-specific TFs and establishes cooperative environments. Enhancers enriched with motifs of both TF classes show high coactivator binding, enhanced coordination and sensitivity to bromodomain inhibitors.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 10","pages":"2199-2212"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01892-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Context transcription factors establish cooperative environments and mediate enhancer communication\",\"authors\":\"Judith F. Kribelbauer-Swietek, Olga Pushkarev, Vincent Gardeux, Katerina Faltejskova, Julie Russeil, Guido van Mierlo, Bart Deplancke\",\"doi\":\"10.1038/s41588-024-01892-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, ‘context-only’ TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, ‘context-initiator’ TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity. This study identifies context-only transcription factors (TFs), a TF class that enhances DNA accessibility initiated by cell type-specific TFs and establishes cooperative environments. Enhancers enriched with motifs of both TF classes show high coactivator binding, enhanced coordination and sensitivity to bromodomain inhibitors.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 10\",\"pages\":\"2199-2212\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-024-01892-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01892-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01892-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Context transcription factors establish cooperative environments and mediate enhancer communication
Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, ‘context-only’ TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, ‘context-initiator’ TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity. This study identifies context-only transcription factors (TFs), a TF class that enhances DNA accessibility initiated by cell type-specific TFs and establishes cooperative environments. Enhancers enriched with motifs of both TF classes show high coactivator binding, enhanced coordination and sensitivity to bromodomain inhibitors.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution