Chengjun Zeng , Yunqiang Hu , Liwu Liu , Xiaozhou Xin , Wei Zhao , Yanju Liu , Jinsong Leng
{"title":"融合粘弹性和相变概念的各向异性形状记忆聚合物复合材料三维有限变形结构模型","authors":"Chengjun Zeng , Yunqiang Hu , Liwu Liu , Xiaozhou Xin , Wei Zhao , Yanju Liu , Jinsong Leng","doi":"10.1016/j.ijplas.2024.104139","DOIUrl":null,"url":null,"abstract":"<div><div>The phase transition theory of shape memory polymers (SMPs) often involves a phenomenological assumption that the reference configuration of the newly transformed phase deviates from that of the initial phase. This distinction serves as a crucial mechanism in the manifestation of the shape memory effect. However, elucidating the precise definition of the reference configuration of the transformed phase poses a significant challenge in the formulation of the constitutive model. To tackle this challenge, a three-dimensional (3D) finite deformation constitutive model incorporating effective phase evolution for SMPs has been developed. This model merges insights from the classical viscoelastic framework with the phase transition theory. The anisotropic thermo-viscoelastic constitutive model is further developed by introducing hyperelastic fibers, which integrate the anisotropy of the fibers into a continuous thermodynamic framework through structure tensors. Implemented within the ABAQUS software via a user material (UMAT) subroutine, the proposed model has been meticulously validated against experimental data, showcasing its prowess in simulating stress-strain responses and shape memory characteristics of SMPs and their composites (SMPCs). This innovative model stands as an invaluable instrument for the design and of sophisticated SMP and SMPC structures.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"183 ","pages":"Article 104139"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D finite deformation constitutive model for anisotropic shape memory polymer composites integrating viscoelasticity and phase transition concept\",\"authors\":\"Chengjun Zeng , Yunqiang Hu , Liwu Liu , Xiaozhou Xin , Wei Zhao , Yanju Liu , Jinsong Leng\",\"doi\":\"10.1016/j.ijplas.2024.104139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The phase transition theory of shape memory polymers (SMPs) often involves a phenomenological assumption that the reference configuration of the newly transformed phase deviates from that of the initial phase. This distinction serves as a crucial mechanism in the manifestation of the shape memory effect. However, elucidating the precise definition of the reference configuration of the transformed phase poses a significant challenge in the formulation of the constitutive model. To tackle this challenge, a three-dimensional (3D) finite deformation constitutive model incorporating effective phase evolution for SMPs has been developed. This model merges insights from the classical viscoelastic framework with the phase transition theory. The anisotropic thermo-viscoelastic constitutive model is further developed by introducing hyperelastic fibers, which integrate the anisotropy of the fibers into a continuous thermodynamic framework through structure tensors. Implemented within the ABAQUS software via a user material (UMAT) subroutine, the proposed model has been meticulously validated against experimental data, showcasing its prowess in simulating stress-strain responses and shape memory characteristics of SMPs and their composites (SMPCs). This innovative model stands as an invaluable instrument for the design and of sophisticated SMP and SMPC structures.</div></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"183 \",\"pages\":\"Article 104139\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002663\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A 3D finite deformation constitutive model for anisotropic shape memory polymer composites integrating viscoelasticity and phase transition concept
The phase transition theory of shape memory polymers (SMPs) often involves a phenomenological assumption that the reference configuration of the newly transformed phase deviates from that of the initial phase. This distinction serves as a crucial mechanism in the manifestation of the shape memory effect. However, elucidating the precise definition of the reference configuration of the transformed phase poses a significant challenge in the formulation of the constitutive model. To tackle this challenge, a three-dimensional (3D) finite deformation constitutive model incorporating effective phase evolution for SMPs has been developed. This model merges insights from the classical viscoelastic framework with the phase transition theory. The anisotropic thermo-viscoelastic constitutive model is further developed by introducing hyperelastic fibers, which integrate the anisotropy of the fibers into a continuous thermodynamic framework through structure tensors. Implemented within the ABAQUS software via a user material (UMAT) subroutine, the proposed model has been meticulously validated against experimental data, showcasing its prowess in simulating stress-strain responses and shape memory characteristics of SMPs and their composites (SMPCs). This innovative model stands as an invaluable instrument for the design and of sophisticated SMP and SMPC structures.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.