将低熔点合金的单滴冲击沉积作为有机光伏的顶电极。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-03 DOI:10.1002/smtd.202401235
Boyang Yu, Liangyuqi Kang, Jianning Liu, Huihui Xia, Weiwei Deng, Xinyan Zhao
{"title":"将低熔点合金的单滴冲击沉积作为有机光伏的顶电极。","authors":"Boyang Yu, Liangyuqi Kang, Jianning Liu, Huihui Xia, Weiwei Deng, Xinyan Zhao","doi":"10.1002/smtd.202401235","DOIUrl":null,"url":null,"abstract":"<p><p>Top electrodes of organic photovoltaics (OPVs) are usually thermally evaporated in the vacuum, which is non-continuous and time-consuming and has been the bottleneck for the OPV fabrication process. Printable top electrodes that are free of vacuum, high temperature, and solvents will make OPVs more attractive. Low-melting-point alloys (LMPAs) are promising candidates for printable OPV electrodes thanks to the merits of matching work functions, high electron conductivity, high environment stability, and no need for post-treatment. Here, LMPA electrodes are directly deposited on OPVs by simply falling a single LMPA droplet onto the substrate. The LMPA droplet spreads to form a thin film with a smooth interface intimately contacting the substrate. The electrode area can be tailored by adjusting the droplet diameter or the Weber number, which is the ratio of inertia to surface tension. The interface morphology is mainly affected by the contact temperature. The degree of oxidation and charges on the droplet can also influence the electrode area and interface morphology. OPVs with droplet-impacted LMPA electrodes exhibit power conversion efficiencies of up to 16.17%. This work demonstrates the potential of single-droplet impact deposition as a simple method for printing OPV electrodes for scalable manufacturing.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Deposition of a Single Droplet of Low-Melting-Point Alloy as the Top Electrode for Organic Photovoltaics.\",\"authors\":\"Boyang Yu, Liangyuqi Kang, Jianning Liu, Huihui Xia, Weiwei Deng, Xinyan Zhao\",\"doi\":\"10.1002/smtd.202401235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Top electrodes of organic photovoltaics (OPVs) are usually thermally evaporated in the vacuum, which is non-continuous and time-consuming and has been the bottleneck for the OPV fabrication process. Printable top electrodes that are free of vacuum, high temperature, and solvents will make OPVs more attractive. Low-melting-point alloys (LMPAs) are promising candidates for printable OPV electrodes thanks to the merits of matching work functions, high electron conductivity, high environment stability, and no need for post-treatment. Here, LMPA electrodes are directly deposited on OPVs by simply falling a single LMPA droplet onto the substrate. The LMPA droplet spreads to form a thin film with a smooth interface intimately contacting the substrate. The electrode area can be tailored by adjusting the droplet diameter or the Weber number, which is the ratio of inertia to surface tension. The interface morphology is mainly affected by the contact temperature. The degree of oxidation and charges on the droplet can also influence the electrode area and interface morphology. OPVs with droplet-impacted LMPA electrodes exhibit power conversion efficiencies of up to 16.17%. This work demonstrates the potential of single-droplet impact deposition as a simple method for printing OPV electrodes for scalable manufacturing.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401235\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机光伏器件(OPV)的顶部电极通常在真空中进行热蒸发,这种方法既不连续又耗时,一直是 OPV 制造工艺的瓶颈。无真空、无高温、无溶剂的可印刷顶电极将使 OPV 更具吸引力。低熔点合金(LMPA)具有功函数匹配、高电子传导性、高环境稳定性和无需后处理等优点,因此有望成为可印刷 OPV 电极的候选材料。在这里,只需将单个 LMPA 液滴滴落到基底上,即可在 OPV 上直接沉积 LMPA 电极。LMPA 液滴扩散形成一层薄膜,其光滑的界面与基底紧密接触。电极面积可通过调整液滴直径或韦伯数(即惯性与表面张力之比)来定制。界面形态主要受接触温度的影响。液滴上的氧化程度和电荷也会影响电极面积和界面形态。采用液滴冲击 LMPA 电极的 OPV 显示出高达 16.17% 的功率转换效率。这项工作证明了单液滴冲击沉积作为一种打印 OPV 电极的简单方法,在可扩展制造方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact Deposition of a Single Droplet of Low-Melting-Point Alloy as the Top Electrode for Organic Photovoltaics.

Top electrodes of organic photovoltaics (OPVs) are usually thermally evaporated in the vacuum, which is non-continuous and time-consuming and has been the bottleneck for the OPV fabrication process. Printable top electrodes that are free of vacuum, high temperature, and solvents will make OPVs more attractive. Low-melting-point alloys (LMPAs) are promising candidates for printable OPV electrodes thanks to the merits of matching work functions, high electron conductivity, high environment stability, and no need for post-treatment. Here, LMPA electrodes are directly deposited on OPVs by simply falling a single LMPA droplet onto the substrate. The LMPA droplet spreads to form a thin film with a smooth interface intimately contacting the substrate. The electrode area can be tailored by adjusting the droplet diameter or the Weber number, which is the ratio of inertia to surface tension. The interface morphology is mainly affected by the contact temperature. The degree of oxidation and charges on the droplet can also influence the electrode area and interface morphology. OPVs with droplet-impacted LMPA electrodes exhibit power conversion efficiencies of up to 16.17%. This work demonstrates the potential of single-droplet impact deposition as a simple method for printing OPV electrodes for scalable manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Fourier Ptychographic Coherent Anti-Stokes Raman Scattering Microscopy with Point-Scanning for Super-Resolution Imaging. Li-Sb Alloy Formation Strategy to Improve Interfacial Stability of All-Solid-State Lithium Batteries. Biomimetic Multi-Interface Design of Raspberry-like Absorbent: Gd-doped FeNi3@Covalent Organic Framework Derivatives for Efficient Electromagnetic Attenuation. Impact Deposition of a Single Droplet of Low-Melting-Point Alloy as the Top Electrode for Organic Photovoltaics. Disodium Malate Electrolyte Additive Facilitates Dendrite-Free Zinc Anode: Deposition Kinetics and Interface Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1