Klara Papouskova, Joel Akinola, Francisco J Ruiz-Castilla, John P Morrissey, Jose Ramos, Hana Sychrova
{"title":"Kluyveromyces marxianus 在钾浓度极低的情况下也能生长良好,这得益于高亲和性钾转运体 Hak1。","authors":"Klara Papouskova, Joel Akinola, Francisco J Ruiz-Castilla, John P Morrissey, Jose Ramos, Hana Sychrova","doi":"10.1093/femsyr/foae031","DOIUrl":null,"url":null,"abstract":"<p><p>The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484806/pdf/","citationCount":"0","resultStr":"{\"title\":\"The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1.\",\"authors\":\"Klara Papouskova, Joel Akinola, Francisco J Ruiz-Castilla, John P Morrissey, Jose Ramos, Hana Sychrova\",\"doi\":\"10.1093/femsyr/foae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484806/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae031\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
非常规酵母 Kluyveromyces marxianus 近来已成为许多食品、环境和生物技术应用领域的理想候选酵母。这种酵母耐高温,在许多不利条件下都能生长旺盛。在这里,我们发现它在钾限制条件下的生长能力比酿酒酵母(Saccharomyces cerevisiae)强得多,这表明该酵母具有高效、高亲和力的钾吸收系统。K. marxianus基因组包含两个假定的钾转运体基因:KmHAK1 和 KmTRK1。为了鉴定这两个基因的产物,我们构建了 K. marxianus 的单基因敲除突变体和双基因敲除突变体,并在缺乏钾转运体的 S. cerevisiae 突变体中表达了这两个基因。我们在 K. marxianus 和 S. cerevisiae 中的研究结果表明,这两个基因都编码高效的高亲和性钾转运体,有助于钾平衡和维持血浆膜电位及细胞膜 pH 值。在 K. marxianus 中,HAK1 的存在比 TRK1 更能支持低 K+条件下的生长,这可能是因为 KmHak1 的底物亲和力比 KmTrk1 高约十倍,而且在钾饥饿时,其表达被诱导约八十倍。KmHak1 对 K. marxianus 和 S. cerevisiae 的盐胁迫生存至关重要。在与 ScTrk1 和 ScTrk2 共同表达的实验中,KmHak1 的稳健性提高了 S. cerevisiae 细胞对钠和锂盐胁迫的耐受性。
The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1.
The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.