Xiaojuan Wu, Fawang Du, Aijie Zhang, Guoyue Zhang, Rui Xu, Xianzhi Du
{"title":"KDELR2 是通过 IRE1α/XBP-1s 依赖性机制促进慢性阻塞性肺病气道 Mucin5AC 高分泌所必需的。","authors":"Xiaojuan Wu, Fawang Du, Aijie Zhang, Guoyue Zhang, Rui Xu, Xianzhi Du","doi":"10.1111/jcmm.70125","DOIUrl":null,"url":null,"abstract":"<p>Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4μ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451269/pdf/","citationCount":"0","resultStr":"{\"title\":\"KDELR2 is necessary for chronic obstructive pulmonary disease airway Mucin5AC hypersecretion via an IRE1α/XBP-1s-dependent mechanism\",\"authors\":\"Xiaojuan Wu, Fawang Du, Aijie Zhang, Guoyue Zhang, Rui Xu, Xianzhi Du\",\"doi\":\"10.1111/jcmm.70125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4μ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"28 19\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
KDELR2 is necessary for chronic obstructive pulmonary disease airway Mucin5AC hypersecretion via an IRE1α/XBP-1s-dependent mechanism
Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4μ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.