探索海洋化合物作为潜在生物控制剂防治白粉病,促进农业可持续发展:一种基于计算机的方法。

IF 1.9 3区 化学 Q3 CHEMISTRY, APPLIED Natural Product Research Pub Date : 2024-10-04 DOI:10.1080/14786419.2024.2409985
Gokul Sudhakaran, Xinghui Liu, Bader O Almutairi, Moovendhan Meivelu, Kuppusamy Sathishkumar
{"title":"探索海洋化合物作为潜在生物控制剂防治白粉病,促进农业可持续发展:一种基于计算机的方法。","authors":"Gokul Sudhakaran, Xinghui Liu, Bader O Almutairi, Moovendhan Meivelu, Kuppusamy Sathishkumar","doi":"10.1080/14786419.2024.2409985","DOIUrl":null,"url":null,"abstract":"<p><p>Powdery mildew is a pervasive fungal disease causing significant economic losses globally. Continuous use of synthetic fungicides has led to environmental concerns and resistant fungal strains. This study explores marine-derived cephalostatins from the South African Natural Compounds Database as novel fungicidal agents for managing powdery mildew. Using molecular docking techniques, we investigated the interaction between selected cephalostatins and critical proteins involved in powdery mildew pathogenesis. Compounds were selected based on drug-likeness and bioactivity, adhering to Lipinski's Rule of Five. Molecular interactions, binding affinities, and stability were analysed using AutoDock Vina, PyMOL, and Discovery Studio. Cephalostatin 17 exhibited the highest binding affinity (-10.4 kcal/mol), indicating strong potential for inhibiting fungal growth through significant hydrogen bonding and hydrophobic interactions. The study's primary limitation is the reliance on computational predictions, necessitating experimental validation. Cephalostatin 17 stands out as a promising candidate for sustainable agricultural practices.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring marine compounds as potential biocontrol agents against powdery mildew for agricultural sustainability: a computer-based approach.\",\"authors\":\"Gokul Sudhakaran, Xinghui Liu, Bader O Almutairi, Moovendhan Meivelu, Kuppusamy Sathishkumar\",\"doi\":\"10.1080/14786419.2024.2409985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Powdery mildew is a pervasive fungal disease causing significant economic losses globally. Continuous use of synthetic fungicides has led to environmental concerns and resistant fungal strains. This study explores marine-derived cephalostatins from the South African Natural Compounds Database as novel fungicidal agents for managing powdery mildew. Using molecular docking techniques, we investigated the interaction between selected cephalostatins and critical proteins involved in powdery mildew pathogenesis. Compounds were selected based on drug-likeness and bioactivity, adhering to Lipinski's Rule of Five. Molecular interactions, binding affinities, and stability were analysed using AutoDock Vina, PyMOL, and Discovery Studio. Cephalostatin 17 exhibited the highest binding affinity (-10.4 kcal/mol), indicating strong potential for inhibiting fungal growth through significant hydrogen bonding and hydrophobic interactions. The study's primary limitation is the reliance on computational predictions, necessitating experimental validation. Cephalostatin 17 stands out as a promising candidate for sustainable agricultural practices.</p>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/14786419.2024.2409985\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2024.2409985","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

白粉病是一种普遍存在的真菌病害,给全球造成重大经济损失。合成杀菌剂的持续使用导致了环境问题和抗性真菌菌株的产生。本研究从南非天然化合物数据库中提取海洋来源的头孢菌素作为新型杀真菌剂,用于防治白粉病。利用分子对接技术,我们研究了所选头孢霉素与参与白粉病发病机制的关键蛋白质之间的相互作用。化合物的选择基于药物相似性和生物活性,并遵循利宾斯基的 "五原则"。使用 AutoDock Vina、PyMOL 和 Discovery Studio 分析了分子相互作用、结合亲和力和稳定性。头孢他啶 17 的结合亲和力最高(-10.4 kcal/mol),这表明它具有通过显著的氢键和疏水作用抑制真菌生长的强大潜力。这项研究的主要局限是依赖于计算预测,因此有必要进行实验验证。头孢噻肟 17 是一种很有希望用于可持续农业实践的候选物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring marine compounds as potential biocontrol agents against powdery mildew for agricultural sustainability: a computer-based approach.

Powdery mildew is a pervasive fungal disease causing significant economic losses globally. Continuous use of synthetic fungicides has led to environmental concerns and resistant fungal strains. This study explores marine-derived cephalostatins from the South African Natural Compounds Database as novel fungicidal agents for managing powdery mildew. Using molecular docking techniques, we investigated the interaction between selected cephalostatins and critical proteins involved in powdery mildew pathogenesis. Compounds were selected based on drug-likeness and bioactivity, adhering to Lipinski's Rule of Five. Molecular interactions, binding affinities, and stability were analysed using AutoDock Vina, PyMOL, and Discovery Studio. Cephalostatin 17 exhibited the highest binding affinity (-10.4 kcal/mol), indicating strong potential for inhibiting fungal growth through significant hydrogen bonding and hydrophobic interactions. The study's primary limitation is the reliance on computational predictions, necessitating experimental validation. Cephalostatin 17 stands out as a promising candidate for sustainable agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Research
Natural Product Research 化学-医药化学
CiteScore
5.10
自引率
9.10%
发文量
605
审稿时长
2.1 months
期刊介绍: The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds. The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal. Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.
期刊最新文献
Exploring marine compounds as potential biocontrol agents against powdery mildew for agricultural sustainability: a computer-based approach. Targeting insulin resistance: myricetin and isorhamnetin from Hardwickia binata, and luteolin from Hedysarum alpinum enhance glucose uptake and AMPK signaling in HepG2 cells. Novel metabolites from the Mariana Trench-derived fungus Talaromyces sp. SY2250. Schsphenines A and B, two new lignans from the fruit of Schisandra sphenanthera with cardioprotective Activities. A new isocoumarin from sponge endophytic fungus Aspergillus ochraceopetaliformis with cytotoxic activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1