{"title":"在心理时间序列中识别趋势-季节成分和检测意外行为的分析方法。","authors":"Christina Parpoula","doi":"10.1002/ijop.13244","DOIUrl":null,"url":null,"abstract":"<p>The recent advances in technological capabilities have led to a massive production of time-series data and remarkable progress in longitudinal designs and analyses within psychological research. However, implementing time-series analysis can be challenging due to the various characteristics and complexities involved, as well as the need for statistical expertise. This paper introduces a statistical pipeline on time-series analysis for studying the changes in a single process over time at either a population or individual level, both retrospectively and prospectively. This is achieved through systemization and extension of existing modelling and inference techniques. This analytical approach enables practitioners not only to track but also to model and evaluate emerging trends and apparent seasonality. It also allows for the detection of unexpected events, quantifying their deviations from baseline and forecasting future values. Given that other discernible population- and individual-level changes in psychological and behavioural processes have not yet emerged, continued surveillance is warranted. A near real-time monitoring tool of time-series data could guide community psychological responses across multiple ecological levels, making it a valuable resource for field practitioners and psychologists. An empirical study is conducted to illustrate the implementation of the introduced analytical pipeline in practice and to demonstrate its capabilities.</p>","PeriodicalId":48146,"journal":{"name":"International Journal of Psychology","volume":"59 6","pages":"1307-1316"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijop.13244","citationCount":"0","resultStr":"{\"title\":\"An analytical approach for identifying trend-seasonal components and detecting unexpected behaviour in psychological time-series\",\"authors\":\"Christina Parpoula\",\"doi\":\"10.1002/ijop.13244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recent advances in technological capabilities have led to a massive production of time-series data and remarkable progress in longitudinal designs and analyses within psychological research. However, implementing time-series analysis can be challenging due to the various characteristics and complexities involved, as well as the need for statistical expertise. This paper introduces a statistical pipeline on time-series analysis for studying the changes in a single process over time at either a population or individual level, both retrospectively and prospectively. This is achieved through systemization and extension of existing modelling and inference techniques. This analytical approach enables practitioners not only to track but also to model and evaluate emerging trends and apparent seasonality. It also allows for the detection of unexpected events, quantifying their deviations from baseline and forecasting future values. Given that other discernible population- and individual-level changes in psychological and behavioural processes have not yet emerged, continued surveillance is warranted. A near real-time monitoring tool of time-series data could guide community psychological responses across multiple ecological levels, making it a valuable resource for field practitioners and psychologists. An empirical study is conducted to illustrate the implementation of the introduced analytical pipeline in practice and to demonstrate its capabilities.</p>\",\"PeriodicalId\":48146,\"journal\":{\"name\":\"International Journal of Psychology\",\"volume\":\"59 6\",\"pages\":\"1307-1316\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijop.13244\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijop.13244\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijop.13244","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
An analytical approach for identifying trend-seasonal components and detecting unexpected behaviour in psychological time-series
The recent advances in technological capabilities have led to a massive production of time-series data and remarkable progress in longitudinal designs and analyses within psychological research. However, implementing time-series analysis can be challenging due to the various characteristics and complexities involved, as well as the need for statistical expertise. This paper introduces a statistical pipeline on time-series analysis for studying the changes in a single process over time at either a population or individual level, both retrospectively and prospectively. This is achieved through systemization and extension of existing modelling and inference techniques. This analytical approach enables practitioners not only to track but also to model and evaluate emerging trends and apparent seasonality. It also allows for the detection of unexpected events, quantifying their deviations from baseline and forecasting future values. Given that other discernible population- and individual-level changes in psychological and behavioural processes have not yet emerged, continued surveillance is warranted. A near real-time monitoring tool of time-series data could guide community psychological responses across multiple ecological levels, making it a valuable resource for field practitioners and psychologists. An empirical study is conducted to illustrate the implementation of the introduced analytical pipeline in practice and to demonstrate its capabilities.
期刊介绍:
The International Journal of Psychology (IJP) is the journal of the International Union of Psychological Science (IUPsyS) and is published under the auspices of the Union. IJP seeks to support the IUPsyS in fostering the development of international psychological science. It aims to strengthen the dialog within psychology around the world and to facilitate communication among different areas of psychology and among psychologists from different cultural backgrounds. IJP is the outlet for empirical basic and applied studies and for reviews that either (a) incorporate perspectives from different areas or domains within psychology or across different disciplines, (b) test the culture-dependent validity of psychological theories, or (c) integrate literature from different regions in the world.