{"title":"基于离散最优传输的点云匹配。","authors":"Litao Ma;Wei Bian;Xiaoping Xue","doi":"10.1109/TIP.2024.3459594","DOIUrl":null,"url":null,"abstract":"Matching is an important prerequisite for point clouds registration, which is to establish a reliable correspondence between two point clouds. This paper aims to improve recent theoretical and algorithmic results on discrete optimal transport (DOT), since it lacks robustness for the point clouds matching problems with large-scale affine or even nonlinear transformation. We first consider the importance of the used prior probability for accurate matching and give some theoretical analysis. Then, to solve the point clouds matching problems with complex deformation and noise, we propose an improved DOT model, which introduces an orthogonal matrix and a diagonal matrix into the classical DOT model. To enhance its capability of dealing with cases with outliers, we further bring forward a relaxed and regularized DOT model. Meantime, we propose two algorithms to solve the brought forward two models. Finally, extensive experiments on some real datasets are designed in the presence of reflection, large-scale rotation, stretch, noise, and outliers. Some state-of-the-art methods, including CPD, APM, RANSAC, TPS-ICP, TPS-RPM, RPMNet, and classical DOT methods, are to be discussed and compared. For different levels of degradation, the numerical results demonstrate that the proposed methods perform more favorably and robustly than the other methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5650-5662"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point Clouds Matching Based on Discrete Optimal Transport\",\"authors\":\"Litao Ma;Wei Bian;Xiaoping Xue\",\"doi\":\"10.1109/TIP.2024.3459594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matching is an important prerequisite for point clouds registration, which is to establish a reliable correspondence between two point clouds. This paper aims to improve recent theoretical and algorithmic results on discrete optimal transport (DOT), since it lacks robustness for the point clouds matching problems with large-scale affine or even nonlinear transformation. We first consider the importance of the used prior probability for accurate matching and give some theoretical analysis. Then, to solve the point clouds matching problems with complex deformation and noise, we propose an improved DOT model, which introduces an orthogonal matrix and a diagonal matrix into the classical DOT model. To enhance its capability of dealing with cases with outliers, we further bring forward a relaxed and regularized DOT model. Meantime, we propose two algorithms to solve the brought forward two models. Finally, extensive experiments on some real datasets are designed in the presence of reflection, large-scale rotation, stretch, noise, and outliers. Some state-of-the-art methods, including CPD, APM, RANSAC, TPS-ICP, TPS-RPM, RPMNet, and classical DOT methods, are to be discussed and compared. For different levels of degradation, the numerical results demonstrate that the proposed methods perform more favorably and robustly than the other methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5650-5662\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704995/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704995/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point Clouds Matching Based on Discrete Optimal Transport
Matching is an important prerequisite for point clouds registration, which is to establish a reliable correspondence between two point clouds. This paper aims to improve recent theoretical and algorithmic results on discrete optimal transport (DOT), since it lacks robustness for the point clouds matching problems with large-scale affine or even nonlinear transformation. We first consider the importance of the used prior probability for accurate matching and give some theoretical analysis. Then, to solve the point clouds matching problems with complex deformation and noise, we propose an improved DOT model, which introduces an orthogonal matrix and a diagonal matrix into the classical DOT model. To enhance its capability of dealing with cases with outliers, we further bring forward a relaxed and regularized DOT model. Meantime, we propose two algorithms to solve the brought forward two models. Finally, extensive experiments on some real datasets are designed in the presence of reflection, large-scale rotation, stretch, noise, and outliers. Some state-of-the-art methods, including CPD, APM, RANSAC, TPS-ICP, TPS-RPM, RPMNet, and classical DOT methods, are to be discussed and compared. For different levels of degradation, the numerical results demonstrate that the proposed methods perform more favorably and robustly than the other methods.