携带自力矩或随时间变化的轨道角动量的圆偏振高次谐波光束

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-10-04 DOI:10.1021/acsphotonics.4c01320
Alba de las Heras, Julio San Román, Javier Serrano, Luis Plaja, Carlos Hernández-García
{"title":"携带自力矩或随时间变化的轨道角动量的圆偏振高次谐波光束","authors":"Alba de las Heras, Julio San Román, Javier Serrano, Luis Plaja, Carlos Hernández-García","doi":"10.1021/acsphotonics.4c01320","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving field of structured light, self-torque has been recently defined as an intrinsic property of light beams carrying time-dependent orbital angular momentum. In particular, extreme-ultraviolet (EUV) beams with self-torque, exhibiting a topological charge that continuously varies on the subfemtosecond time scale, are naturally produced in high-order harmonic generation (HHG) when driven by two time-delayed intense infrared vortex beams with different topological charges. Until now, the polarization state of such EUV beams carrying self-torque has been restricted to linear states due to the drastic reduction in the harmonic up-conversion efficiency with increasing the ellipticity of the driving field. In this work, we theoretically demonstrate how to control the polarization state of EUV beams carrying self-torque, from linear to circular. The extremely high sensitivity of HHG to the properties of the driving beam allows us to propose two different driving schemes to circumvent the current limitations to manipulate the polarization state of EUV beams with self-torque. Our advanced numerical simulations are complemented with the derivation of selection rules of angular momentum conservation, which enable precise tunability over the angular momentum properties of the harmonics with self-torque. The resulting high-order harmonic emission, carrying time-dependent orbital angular momentum with a custom polarization state, can expand the applications of ultrafast light–matter interactions, particularly in areas where dichroic or chiral properties are crucial, such as magnetic materials or chiral molecules.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circularly Polarized High-Harmonic Beams Carrying Self-Torque or Time-Dependent Orbital Angular Momentum\",\"authors\":\"Alba de las Heras, Julio San Román, Javier Serrano, Luis Plaja, Carlos Hernández-García\",\"doi\":\"10.1021/acsphotonics.4c01320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving field of structured light, self-torque has been recently defined as an intrinsic property of light beams carrying time-dependent orbital angular momentum. In particular, extreme-ultraviolet (EUV) beams with self-torque, exhibiting a topological charge that continuously varies on the subfemtosecond time scale, are naturally produced in high-order harmonic generation (HHG) when driven by two time-delayed intense infrared vortex beams with different topological charges. Until now, the polarization state of such EUV beams carrying self-torque has been restricted to linear states due to the drastic reduction in the harmonic up-conversion efficiency with increasing the ellipticity of the driving field. In this work, we theoretically demonstrate how to control the polarization state of EUV beams carrying self-torque, from linear to circular. The extremely high sensitivity of HHG to the properties of the driving beam allows us to propose two different driving schemes to circumvent the current limitations to manipulate the polarization state of EUV beams with self-torque. Our advanced numerical simulations are complemented with the derivation of selection rules of angular momentum conservation, which enable precise tunability over the angular momentum properties of the harmonics with self-torque. The resulting high-order harmonic emission, carrying time-dependent orbital angular momentum with a custom polarization state, can expand the applications of ultrafast light–matter interactions, particularly in areas where dichroic or chiral properties are crucial, such as magnetic materials or chiral molecules.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01320\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01320","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的结构光领域,自转矩最近被定义为携带随时间变化的轨道角动量的光束的固有特性。特别是,当两个具有不同拓扑电荷的延时强红外涡旋光束驱动时,在高阶谐波发生(HHG)中自然会产生具有自转矩的极紫外(EUV)光束,这种光束表现出在亚飞秒时间尺度上持续变化的拓扑电荷。到目前为止,由于随着驱动场椭圆度的增加,谐波上转换效率急剧下降,这种携带自转矩的超紫外光束的偏振态一直局限于线性态。在这项工作中,我们从理论上证明了如何控制携带自转矩的超紫外光束的偏振态,从线性到圆形。HHG 对驱动光束特性的灵敏度极高,因此我们提出了两种不同的驱动方案,以规避目前在操纵带有自转矩的 EUV 光束的偏振态方面存在的限制。我们先进的数值模拟与角动量守恒选择规则的推导相辅相成,从而实现了自转矩谐波角动量特性的精确调节。由此产生的高阶谐波发射携带着随时间变化的轨道角动量和自定义偏振态,可以扩大超快光物质相互作用的应用范围,特别是在二色性或手性特性至关重要的领域,如磁性材料或手性分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Circularly Polarized High-Harmonic Beams Carrying Self-Torque or Time-Dependent Orbital Angular Momentum
In the rapidly evolving field of structured light, self-torque has been recently defined as an intrinsic property of light beams carrying time-dependent orbital angular momentum. In particular, extreme-ultraviolet (EUV) beams with self-torque, exhibiting a topological charge that continuously varies on the subfemtosecond time scale, are naturally produced in high-order harmonic generation (HHG) when driven by two time-delayed intense infrared vortex beams with different topological charges. Until now, the polarization state of such EUV beams carrying self-torque has been restricted to linear states due to the drastic reduction in the harmonic up-conversion efficiency with increasing the ellipticity of the driving field. In this work, we theoretically demonstrate how to control the polarization state of EUV beams carrying self-torque, from linear to circular. The extremely high sensitivity of HHG to the properties of the driving beam allows us to propose two different driving schemes to circumvent the current limitations to manipulate the polarization state of EUV beams with self-torque. Our advanced numerical simulations are complemented with the derivation of selection rules of angular momentum conservation, which enable precise tunability over the angular momentum properties of the harmonics with self-torque. The resulting high-order harmonic emission, carrying time-dependent orbital angular momentum with a custom polarization state, can expand the applications of ultrafast light–matter interactions, particularly in areas where dichroic or chiral properties are crucial, such as magnetic materials or chiral molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Enhancing Near-Field Radiative Heat Transfer between Dissimilar Dielectric Media by Coupling Surface Phonon Polaritons to Graphene’s Plasmons Terahertz Dirac Hyperbolic Metamaterial Spontaneously-Oriented Evaporated Organic Semiconductor Thin Films for Second-Order Nonlinear Photonics Circularly Polarized High-Harmonic Beams Carrying Self-Torque or Time-Dependent Orbital Angular Momentum Point Spread Function Engineering for Spiral Phase Interferometric Scattering Microscopy Enables Robust 3D Single-Particle Tracking and Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1