Celine Caseys, Anna Jo Muhich, Josue Vega, Maha Ahmed, Aleshia Hopper, David Kelly, Sydney Kim, Matisse Madrone, Taylor Plaziak, Melissa Wang, Daniel J. Kliebenstein
{"title":"叶片背面和正面会对几种裸子植物的灰霉病菌相互作用产生不同影响。","authors":"Celine Caseys, Anna Jo Muhich, Josue Vega, Maha Ahmed, Aleshia Hopper, David Kelly, Sydney Kim, Matisse Madrone, Taylor Plaziak, Melissa Wang, Daniel J. Kliebenstein","doi":"10.1111/tpj.17055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how <i>Botrytis cinerea</i>, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 <i>B. cinerea</i> strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 4","pages":"1377-1391"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots\",\"authors\":\"Celine Caseys, Anna Jo Muhich, Josue Vega, Maha Ahmed, Aleshia Hopper, David Kelly, Sydney Kim, Matisse Madrone, Taylor Plaziak, Melissa Wang, Daniel J. Kliebenstein\",\"doi\":\"10.1111/tpj.17055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how <i>Botrytis cinerea</i>, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 <i>B. cinerea</i> strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"120 4\",\"pages\":\"1377-1391\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17055\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.