Pranav Chandarana, Koushik Paul, Mikel Garcia-de-Andoin, Yue Ban, Mikel Sanz, Xi Chen
{"title":"光子逆绝热量子优化算法","authors":"Pranav Chandarana, Koushik Paul, Mikel Garcia-de-Andoin, Yue Ban, Mikel Sanz, Xi Chen","doi":"10.1038/s42005-024-01807-2","DOIUrl":null,"url":null,"abstract":"One of the key applications of near-term quantum computers has been the development of quantum optimization algorithms. However, these algorithms have largely been focused on qubit-based technologies. Here, we propose a hybrid quantum-classical approximate optimization algorithm for photonic quantum computing, specifically tailored for addressing continuous-variable optimization problems. Inspired by counterdiabatic protocols, our algorithm reduces the required quantum operations for optimization compared to adiabatic protocols. This reduction enables us to tackle non-convex continuous optimization within the near-term era of quantum computing. Through illustrative benchmarking, we show that our approach can outperform existing state-of-the-art hybrid adiabatic quantum algorithms in terms of convergence and implementability. Our algorithm offers a practical and accessible experimental realization, bypassing the need for high-order operations and overcoming experimental constraints. We conduct a proof-of-principle demonstration on Xanadu’s eight-mode nanophotonic quantum chip, successfully showcasing the feasibility and potential impact of the algorithm. The authors introduce a hybrid quantum-classical algorithm for photonic quantum computing that focuses on tackling continuous-variable optimization problems using fewer quantum operations than existing methods. The approach shows better performance and practical implementation potential, demonstrated on Xanadu’s quantum chip.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01807-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Photonic counterdiabatic quantum optimization algorithm\",\"authors\":\"Pranav Chandarana, Koushik Paul, Mikel Garcia-de-Andoin, Yue Ban, Mikel Sanz, Xi Chen\",\"doi\":\"10.1038/s42005-024-01807-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key applications of near-term quantum computers has been the development of quantum optimization algorithms. However, these algorithms have largely been focused on qubit-based technologies. Here, we propose a hybrid quantum-classical approximate optimization algorithm for photonic quantum computing, specifically tailored for addressing continuous-variable optimization problems. Inspired by counterdiabatic protocols, our algorithm reduces the required quantum operations for optimization compared to adiabatic protocols. This reduction enables us to tackle non-convex continuous optimization within the near-term era of quantum computing. Through illustrative benchmarking, we show that our approach can outperform existing state-of-the-art hybrid adiabatic quantum algorithms in terms of convergence and implementability. Our algorithm offers a practical and accessible experimental realization, bypassing the need for high-order operations and overcoming experimental constraints. We conduct a proof-of-principle demonstration on Xanadu’s eight-mode nanophotonic quantum chip, successfully showcasing the feasibility and potential impact of the algorithm. The authors introduce a hybrid quantum-classical algorithm for photonic quantum computing that focuses on tackling continuous-variable optimization problems using fewer quantum operations than existing methods. The approach shows better performance and practical implementation potential, demonstrated on Xanadu’s quantum chip.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01807-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01807-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01807-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
One of the key applications of near-term quantum computers has been the development of quantum optimization algorithms. However, these algorithms have largely been focused on qubit-based technologies. Here, we propose a hybrid quantum-classical approximate optimization algorithm for photonic quantum computing, specifically tailored for addressing continuous-variable optimization problems. Inspired by counterdiabatic protocols, our algorithm reduces the required quantum operations for optimization compared to adiabatic protocols. This reduction enables us to tackle non-convex continuous optimization within the near-term era of quantum computing. Through illustrative benchmarking, we show that our approach can outperform existing state-of-the-art hybrid adiabatic quantum algorithms in terms of convergence and implementability. Our algorithm offers a practical and accessible experimental realization, bypassing the need for high-order operations and overcoming experimental constraints. We conduct a proof-of-principle demonstration on Xanadu’s eight-mode nanophotonic quantum chip, successfully showcasing the feasibility and potential impact of the algorithm. The authors introduce a hybrid quantum-classical algorithm for photonic quantum computing that focuses on tackling continuous-variable optimization problems using fewer quantum operations than existing methods. The approach shows better performance and practical implementation potential, demonstrated on Xanadu’s quantum chip.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.