Zhengliang Zhang, Sensen Wu, Baohua Zhang, Zhenhong Du, Qunke Xia
{"title":"数据驱动方法揭示的青藏高原地表热流分布情况","authors":"Zhengliang Zhang, Sensen Wu, Baohua Zhang, Zhenhong Du, Qunke Xia","doi":"10.1029/2023JB028491","DOIUrl":null,"url":null,"abstract":"<p>Surface heat flow (SHF) serves as a vital parameter for assessing the heat transfer from deep Earth to the surface, which can provide crucial insights into internal geodynamic processes. As the “roof of the world,” the Tibetan Plateau and its tectonic evolution are highly important in terms of global climate change and geodynamic study. However, a comprehensive understanding of the SHF distribution across most regions of the Tibetan Plateau is limited due to sparse measurement data. To surmount this limitation, a spatially intelligent approach has been developed: The geographically neural network weighted regression with enhanced interpretability (EI-GNNWR). This method integrates spatial heterogeneity and nonlinear interactions between geophysical and geological factors to predict the SHF distribution across the Tibetan Plateau. In this study, the EI-GNNWR model is used to accurately predict SHF across the entire region. After evaluating the effectiveness and interpretability of the EI-GNNWR model, our results demonstrate that medium to high SHF values are predominantly concentrated in the southern, northeastern, and southeastern sectors of the Tibetan Plateau. These observations suggest that the formation of zones with high SHF values may be strongly influenced by the Moho depth, ridges, topography, and average curvature of satellite gravity gradients. Especially, higher SHF values may indicate more profound geodynamic activities such as collisional orogeny, shear deformation zones, or lithospheric extension. These findings offer novel insights into the spatial patterns of SHF and deepen our understanding of the geothermal formation mechanisms driven by underlying tectonic activities.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Distribution of Surface Heat Flow on the Tibetan Plateau Revealed by Data-Driven Methods\",\"authors\":\"Zhengliang Zhang, Sensen Wu, Baohua Zhang, Zhenhong Du, Qunke Xia\",\"doi\":\"10.1029/2023JB028491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface heat flow (SHF) serves as a vital parameter for assessing the heat transfer from deep Earth to the surface, which can provide crucial insights into internal geodynamic processes. As the “roof of the world,” the Tibetan Plateau and its tectonic evolution are highly important in terms of global climate change and geodynamic study. However, a comprehensive understanding of the SHF distribution across most regions of the Tibetan Plateau is limited due to sparse measurement data. To surmount this limitation, a spatially intelligent approach has been developed: The geographically neural network weighted regression with enhanced interpretability (EI-GNNWR). This method integrates spatial heterogeneity and nonlinear interactions between geophysical and geological factors to predict the SHF distribution across the Tibetan Plateau. In this study, the EI-GNNWR model is used to accurately predict SHF across the entire region. After evaluating the effectiveness and interpretability of the EI-GNNWR model, our results demonstrate that medium to high SHF values are predominantly concentrated in the southern, northeastern, and southeastern sectors of the Tibetan Plateau. These observations suggest that the formation of zones with high SHF values may be strongly influenced by the Moho depth, ridges, topography, and average curvature of satellite gravity gradients. Especially, higher SHF values may indicate more profound geodynamic activities such as collisional orogeny, shear deformation zones, or lithospheric extension. These findings offer novel insights into the spatial patterns of SHF and deepen our understanding of the geothermal formation mechanisms driven by underlying tectonic activities.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JB028491\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JB028491","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Distribution of Surface Heat Flow on the Tibetan Plateau Revealed by Data-Driven Methods
Surface heat flow (SHF) serves as a vital parameter for assessing the heat transfer from deep Earth to the surface, which can provide crucial insights into internal geodynamic processes. As the “roof of the world,” the Tibetan Plateau and its tectonic evolution are highly important in terms of global climate change and geodynamic study. However, a comprehensive understanding of the SHF distribution across most regions of the Tibetan Plateau is limited due to sparse measurement data. To surmount this limitation, a spatially intelligent approach has been developed: The geographically neural network weighted regression with enhanced interpretability (EI-GNNWR). This method integrates spatial heterogeneity and nonlinear interactions between geophysical and geological factors to predict the SHF distribution across the Tibetan Plateau. In this study, the EI-GNNWR model is used to accurately predict SHF across the entire region. After evaluating the effectiveness and interpretability of the EI-GNNWR model, our results demonstrate that medium to high SHF values are predominantly concentrated in the southern, northeastern, and southeastern sectors of the Tibetan Plateau. These observations suggest that the formation of zones with high SHF values may be strongly influenced by the Moho depth, ridges, topography, and average curvature of satellite gravity gradients. Especially, higher SHF values may indicate more profound geodynamic activities such as collisional orogeny, shear deformation zones, or lithospheric extension. These findings offer novel insights into the spatial patterns of SHF and deepen our understanding of the geothermal formation mechanisms driven by underlying tectonic activities.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.