{"title":"健康成年人在前庭-眼反射增益-下降适应后出现短暂的姿势效应恶化。","authors":"Cesar Arduino, Michael C Schubert, Eric R Anson","doi":"10.1007/s00221-024-06923-7","DOIUrl":null,"url":null,"abstract":"<p><p>Suffering an acute asymmetry in vestibular function (i.e., vestibular neuritis) causes increased sway. Non-causal studies report associations between lateral semicircular canal function and balance ability, but direct links remain controversial. We investigate the immediate effect on body sway after unilateral vestibulo-ocular reflex (VOR) gain down adaptation simulating acute peripheral vestibular hypofunction. Eighteen healthy adults, mean age 27.4 (± 12.4), stood wearing an inertial measurement device with their eyes closed on foam before and after incremental VOR gain down adaptation to simulate mild unilateral vestibular neuritis. Active head impulse VOR gain was measured before and after the adaptation to ensure VOR gain adaptation. Percentage change for VOR gain was determined. Sway area was compared before and after VOR adaptation. VOR gain decreased unilaterally exceeding meaningful change values. Sway area was significantly greater immediately after VOR gain down adaptation, but quickly returned to baseline. In a subset of subjects VOR gain was re-assessed and found to remain adapted despite sway normalization. These results indicate that oculomotor adaptation targeting the lateral semicircular canal VOR pathway has an immediate, albeit transient increase in body sway. Rapid return of body sway to baseline levels suggests dynamic sensory reweighting between vestibular and somatosensory inputs to resolve the undesirable increased body sway.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2691-2699"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transiently worse postural effects after vestibulo-ocular reflex gain-down adaptation in healthy adults.\",\"authors\":\"Cesar Arduino, Michael C Schubert, Eric R Anson\",\"doi\":\"10.1007/s00221-024-06923-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Suffering an acute asymmetry in vestibular function (i.e., vestibular neuritis) causes increased sway. Non-causal studies report associations between lateral semicircular canal function and balance ability, but direct links remain controversial. We investigate the immediate effect on body sway after unilateral vestibulo-ocular reflex (VOR) gain down adaptation simulating acute peripheral vestibular hypofunction. Eighteen healthy adults, mean age 27.4 (± 12.4), stood wearing an inertial measurement device with their eyes closed on foam before and after incremental VOR gain down adaptation to simulate mild unilateral vestibular neuritis. Active head impulse VOR gain was measured before and after the adaptation to ensure VOR gain adaptation. Percentage change for VOR gain was determined. Sway area was compared before and after VOR adaptation. VOR gain decreased unilaterally exceeding meaningful change values. Sway area was significantly greater immediately after VOR gain down adaptation, but quickly returned to baseline. In a subset of subjects VOR gain was re-assessed and found to remain adapted despite sway normalization. These results indicate that oculomotor adaptation targeting the lateral semicircular canal VOR pathway has an immediate, albeit transient increase in body sway. Rapid return of body sway to baseline levels suggests dynamic sensory reweighting between vestibular and somatosensory inputs to resolve the undesirable increased body sway.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\" \",\"pages\":\"2691-2699\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-024-06923-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00221-024-06923-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
前庭功能急性不对称(即前庭神经炎)会导致摇摆加剧。非因果关系研究报告了侧半规管功能与平衡能力之间的联系,但直接联系仍存在争议。我们研究了模拟急性外周前庭功能减退的单侧前庭-眼反射(VOR)增益下降适应后对身体摇摆的直接影响。18 名平均年龄为 27.4(± 12.4)岁的健康成年人在模拟轻度单侧前庭神经炎的 VOR 增益下降增量适应前后,佩戴惯性测量装置,闭眼站立在泡沫上。在适应前后测量主动头部脉冲 VOR 增益,以确保 VOR 增益适应。确定 VOR 增益变化的百分比。比较 VOR 适应前后的摇摆面积。单侧 VOR 增益的下降超过了有意义的变化值。VOR 增益下降适应后,摇摆面积立即明显增大,但很快又恢复到基线。对一部分受试者的 VOR 增益进行了重新评估,发现尽管摇摆恢复正常,但仍存在适应性。这些结果表明,针对外侧半规管 VOR 通路的眼球运动适应会立即增加身体摇摆,尽管这种增加是短暂的。身体摇摆迅速恢复到基线水平表明,前庭和躯体感觉输入之间的动态感觉重新配重解决了身体摇摆增加的问题。
Transiently worse postural effects after vestibulo-ocular reflex gain-down adaptation in healthy adults.
Suffering an acute asymmetry in vestibular function (i.e., vestibular neuritis) causes increased sway. Non-causal studies report associations between lateral semicircular canal function and balance ability, but direct links remain controversial. We investigate the immediate effect on body sway after unilateral vestibulo-ocular reflex (VOR) gain down adaptation simulating acute peripheral vestibular hypofunction. Eighteen healthy adults, mean age 27.4 (± 12.4), stood wearing an inertial measurement device with their eyes closed on foam before and after incremental VOR gain down adaptation to simulate mild unilateral vestibular neuritis. Active head impulse VOR gain was measured before and after the adaptation to ensure VOR gain adaptation. Percentage change for VOR gain was determined. Sway area was compared before and after VOR adaptation. VOR gain decreased unilaterally exceeding meaningful change values. Sway area was significantly greater immediately after VOR gain down adaptation, but quickly returned to baseline. In a subset of subjects VOR gain was re-assessed and found to remain adapted despite sway normalization. These results indicate that oculomotor adaptation targeting the lateral semicircular canal VOR pathway has an immediate, albeit transient increase in body sway. Rapid return of body sway to baseline levels suggests dynamic sensory reweighting between vestibular and somatosensory inputs to resolve the undesirable increased body sway.
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.