{"title":"绚丽弧菌的化学感受器 MCP4580 介导了对 L-谷氨酸的趋化作用,从而增强了细菌的毒力。","authors":"Ya Li , Weibo Shi , Zihao Sun , Weiwei Zhang","doi":"10.1016/j.micres.2024.127917","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. <em>Vibrio splendidus</em> is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber<em>.</em> Our study demonstrated that <em>V. splendidus</em> AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in <em>V. splendidus</em> virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of <em>V. splendidus</em> toward L-Glu, and highlights the importance of chemotaxis in its virulence.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"289 ","pages":"Article 127917"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence\",\"authors\":\"Ya Li , Weibo Shi , Zihao Sun , Weiwei Zhang\",\"doi\":\"10.1016/j.micres.2024.127917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. <em>Vibrio splendidus</em> is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber<em>.</em> Our study demonstrated that <em>V. splendidus</em> AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in <em>V. splendidus</em> virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of <em>V. splendidus</em> toward L-Glu, and highlights the importance of chemotaxis in its virulence.</div></div>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"289 \",\"pages\":\"Article 127917\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944501324003185\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324003185","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.