绚丽弧菌的化学感受器 MCP4580 介导了对 L-谷氨酸的趋化作用,从而增强了细菌的毒力。

IF 6.1 1区 生物学 Q1 MICROBIOLOGY Microbiological research Pub Date : 2024-10-01 DOI:10.1016/j.micres.2024.127917
Ya Li , Weibo Shi , Zihao Sun , Weiwei Zhang
{"title":"绚丽弧菌的化学感受器 MCP4580 介导了对 L-谷氨酸的趋化作用,从而增强了细菌的毒力。","authors":"Ya Li ,&nbsp;Weibo Shi ,&nbsp;Zihao Sun ,&nbsp;Weiwei Zhang","doi":"10.1016/j.micres.2024.127917","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. <em>Vibrio splendidus</em> is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber<em>.</em> Our study demonstrated that <em>V. splendidus</em> AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in <em>V. splendidus</em> virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of <em>V. splendidus</em> toward L-Glu, and highlights the importance of chemotaxis in its virulence.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"289 ","pages":"Article 127917"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence\",\"authors\":\"Ya Li ,&nbsp;Weibo Shi ,&nbsp;Zihao Sun ,&nbsp;Weiwei Zhang\",\"doi\":\"10.1016/j.micres.2024.127917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. <em>Vibrio splendidus</em> is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber<em>.</em> Our study demonstrated that <em>V. splendidus</em> AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in <em>V. splendidus</em> virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of <em>V. splendidus</em> toward L-Glu, and highlights the importance of chemotaxis in its virulence.</div></div>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"289 \",\"pages\":\"Article 127917\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944501324003185\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324003185","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

趋化作用是鞭毛细菌的一项基本功能,它能使细菌感知特定的环境信号并做出反应,从而使细菌得以生存和定殖。白芨弧菌是一种重要的机会性病原体,可感染鱼类、双壳贝类和海参等多种宿主。我们的研究表明,白芨弧菌 AJ01 对 L-谷氨酸(L-Glu)具有趋化性,而 L-谷氨酸是海参肠道和呼吸树组织中含量丰富的氨基酸。对从软琼脂游泳板两个位置采集的细菌样本进行了RNA测序(RNA-Seq)分析,以确定对L-谷氨酸有反应的甲基接受趋化蛋白(MCP)。在 40 个已注释的趋化感受器中,MCP4580 被确定为介导 L-Glu 反应的 MCP。分子对接和定点突变显示,配体结合结构域(LBD)中残基81(R81)处的L-精氨酸和残基88(Q88)处的L-谷氨酰胺对L-Glu的识别至关重要。细菌双杂交试验(BTH)显示,MCP4580 形成二聚体,并通过偶联蛋白 CheW1 和 CheW2 与组氨酸激酶 CheA 相互作用。磷酸化分析表明,L-Glu 与 MCP4580 结合后,主要通过 CheW1 抑制 CheA 的磷酸化。值得注意的是,用每种趋化蛋白突变株刺激的海参死亡率都有所降低,这突出表明了趋化作用在白芨弧菌毒力中的重要性。本研究对白芨趋化L-Glu的分子成分和信号转导提供了有价值的见解,并强调了趋化在其毒力中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
期刊最新文献
Adapted evolution towards flagellar loss in Pseudomonas syringae. Role of gut microbiota in rheumatoid arthritis: Potential cellular mechanisms regulated by prebiotic, probiotic, and pharmacological interventions Synergistic effect of Adathoda vasica plant-derived biostimulant and PGPR on Zea mays L. for drought stress management Coagulase-Negative Staphylococci phages panorama: Genomic diversity and in vitro studies for a therapeutic use The LysR-type transcriptional factor PacR controls heterocyst differentiation and C/N metabolism in the cyanobacterium Anabaena PCC 7120.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1