{"title":"二酰甘油激酶的上游和下游途径:不依赖磷脂酰肌醇周转的新型信号转导途径。","authors":"Fumio Sakane, Chiaki Murakami, Hiromichi Sakai","doi":"10.1016/j.jbior.2024.101054","DOIUrl":null,"url":null,"abstract":"<p><p>Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.</p>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":" ","pages":"101054"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways.\",\"authors\":\"Fumio Sakane, Chiaki Murakami, Hiromichi Sakai\",\"doi\":\"10.1016/j.jbior.2024.101054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.</p>\",\"PeriodicalId\":7214,\"journal\":{\"name\":\"Advances in biological regulation\",\"volume\":\" \",\"pages\":\"101054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biological regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbior.2024.101054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbior.2024.101054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways.
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.