{"title":"苯并噻唑类化合物作为强效抗老年痴呆剂的设计、合成、体外和硅学研究。","authors":"Saquib Jalil, Ghulam Shabir, Aamer Saeed, Jamshed Iqbal","doi":"10.1007/s11030-024-10909-6","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial neurological disorder that involves multiple enzymes in the process of developing. Conventional monotherapies provide relief, necessitating alternative multi-targeting approaches to address AD complexity. Therefore, we synthesize N-(benzo[d]thiazol-2-yl) benzamide-based compounds and tested against monoamine oxidases (MAO-A and MAO-B). In the in vitro experimental evaluation of MAO, all the compounds displayed remarkable potency, having IC<sub>50</sub> values in the lower micromolar range. The most potent MAO-A inhibitor was (3e) with an IC<sub>50</sub> value of 0.92 ± 0.09 μM, whereas, (3d) was the most potent inhibitor of MAO-B with an IC<sub>50</sub> value of 0.48 ± 0.04 μM. Moreover, Enzyme kinetics studies revealed that the potent inhibitors of MAO-A and MAO-B showed competitive mode of inhibition. Furthermore, molecular docking studies were also performed to confirm the mode of inhibition and obtain an intuitive picture of potent inhibitors. It also revealed several important interactions, particularly hydrogen bonding interaction. All the newly synthesized compounds showed good ADME pharmacokinetic profile and followed Lipinski rule; these compounds represent promising hits for the development of promising lead compounds for AD treatment.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, in vitro, and in silico study of benzothiazole-based compounds as a potent anti-Alzheimer agent.\",\"authors\":\"Saquib Jalil, Ghulam Shabir, Aamer Saeed, Jamshed Iqbal\",\"doi\":\"10.1007/s11030-024-10909-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a multifactorial neurological disorder that involves multiple enzymes in the process of developing. Conventional monotherapies provide relief, necessitating alternative multi-targeting approaches to address AD complexity. Therefore, we synthesize N-(benzo[d]thiazol-2-yl) benzamide-based compounds and tested against monoamine oxidases (MAO-A and MAO-B). In the in vitro experimental evaluation of MAO, all the compounds displayed remarkable potency, having IC<sub>50</sub> values in the lower micromolar range. The most potent MAO-A inhibitor was (3e) with an IC<sub>50</sub> value of 0.92 ± 0.09 μM, whereas, (3d) was the most potent inhibitor of MAO-B with an IC<sub>50</sub> value of 0.48 ± 0.04 μM. Moreover, Enzyme kinetics studies revealed that the potent inhibitors of MAO-A and MAO-B showed competitive mode of inhibition. Furthermore, molecular docking studies were also performed to confirm the mode of inhibition and obtain an intuitive picture of potent inhibitors. It also revealed several important interactions, particularly hydrogen bonding interaction. All the newly synthesized compounds showed good ADME pharmacokinetic profile and followed Lipinski rule; these compounds represent promising hits for the development of promising lead compounds for AD treatment.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10909-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10909-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design, synthesis, in vitro, and in silico study of benzothiazole-based compounds as a potent anti-Alzheimer agent.
Alzheimer's disease (AD) is a multifactorial neurological disorder that involves multiple enzymes in the process of developing. Conventional monotherapies provide relief, necessitating alternative multi-targeting approaches to address AD complexity. Therefore, we synthesize N-(benzo[d]thiazol-2-yl) benzamide-based compounds and tested against monoamine oxidases (MAO-A and MAO-B). In the in vitro experimental evaluation of MAO, all the compounds displayed remarkable potency, having IC50 values in the lower micromolar range. The most potent MAO-A inhibitor was (3e) with an IC50 value of 0.92 ± 0.09 μM, whereas, (3d) was the most potent inhibitor of MAO-B with an IC50 value of 0.48 ± 0.04 μM. Moreover, Enzyme kinetics studies revealed that the potent inhibitors of MAO-A and MAO-B showed competitive mode of inhibition. Furthermore, molecular docking studies were also performed to confirm the mode of inhibition and obtain an intuitive picture of potent inhibitors. It also revealed several important interactions, particularly hydrogen bonding interaction. All the newly synthesized compounds showed good ADME pharmacokinetic profile and followed Lipinski rule; these compounds represent promising hits for the development of promising lead compounds for AD treatment.