Tianxiang Liu, Cangzhi Jia, Yue Bi, Xudong Guo, Quan Zou, Fuyi Li
{"title":"scDFN:利用深度融合网络增强单细胞 RNA-seq 聚类。","authors":"Tianxiang Liu, Cangzhi Jia, Yue Bi, Xudong Guo, Quan Zou, Fuyi Li","doi":"10.1093/bib/bbae486","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456827/pdf/","citationCount":"0","resultStr":"{\"title\":\"scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.\",\"authors\":\"Tianxiang Liu, Cangzhi Jia, Yue Bi, Xudong Guo, Quan Zou, Fuyi Li\",\"doi\":\"10.1093/bib/bbae486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae486\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae486","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.
Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.