采用电视正则化的磁共振成像加速交替方向乘法。

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic resonance imaging Pub Date : 2024-10-05 DOI:10.1016/j.mri.2024.110249
ZhiBin Zhu , YueHong Ding , Ying Liu , JiaQi Huang
{"title":"采用电视正则化的磁共振成像加速交替方向乘法。","authors":"ZhiBin Zhu ,&nbsp;YueHong Ding ,&nbsp;Ying Liu ,&nbsp;JiaQi Huang","doi":"10.1016/j.mri.2024.110249","DOIUrl":null,"url":null,"abstract":"<div><div>Compressed Sensing (CS) is important in the field of image processing and signal processing, and CS-Magnetic Resonance Imaging (MRI) is used to reconstruct image from undersampled k-space data. Total Variation (TV) regularisation is a common technique to improve the sparsity of image, and the Alternating Direction Multiplier Method (ADMM) plays a key role in the variational image processing problem. This paper aims to improve the quality of MRI and shorten the reconstruction time. We consider MRI to solve a linear inverse problem, we convert it into a constrained optimization problem based on TV regularisation, then an accelerated ADMM is established. Through a series of theoretical derivations, we verify that the algorithm satisfies the convergence rate of <span><math><mi>O</mi><mfenced><mrow><mn>1</mn><mo>/</mo><msup><mi>k</mi><mn>2</mn></msup></mrow></mfenced></math></span> under the condition that one objective function is quadratically convex and the other is strongly convex. We select five undersampled templates for testing in MRI experiment and compare it with other algorithms, experimental results show that our proposed method not only improves the running speed but also gives better reconstruction results.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"114 ","pages":"Article 110249"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerated alternating direction method of multiplier for MRI with TV regularisation\",\"authors\":\"ZhiBin Zhu ,&nbsp;YueHong Ding ,&nbsp;Ying Liu ,&nbsp;JiaQi Huang\",\"doi\":\"10.1016/j.mri.2024.110249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compressed Sensing (CS) is important in the field of image processing and signal processing, and CS-Magnetic Resonance Imaging (MRI) is used to reconstruct image from undersampled k-space data. Total Variation (TV) regularisation is a common technique to improve the sparsity of image, and the Alternating Direction Multiplier Method (ADMM) plays a key role in the variational image processing problem. This paper aims to improve the quality of MRI and shorten the reconstruction time. We consider MRI to solve a linear inverse problem, we convert it into a constrained optimization problem based on TV regularisation, then an accelerated ADMM is established. Through a series of theoretical derivations, we verify that the algorithm satisfies the convergence rate of <span><math><mi>O</mi><mfenced><mrow><mn>1</mn><mo>/</mo><msup><mi>k</mi><mn>2</mn></msup></mrow></mfenced></math></span> under the condition that one objective function is quadratically convex and the other is strongly convex. We select five undersampled templates for testing in MRI experiment and compare it with other algorithms, experimental results show that our proposed method not only improves the running speed but also gives better reconstruction results.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"114 \",\"pages\":\"Article 110249\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24002303\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

压缩传感(CS)在图像处理和信号处理领域非常重要,CS-磁共振成像(MRI)用于从欠采样 k 空间数据重建图像。总变异(TV)正则化是改善图像稀疏性的常用技术,而交替方向乘法器法(ADMM)在变异图像处理问题中发挥着关键作用。本文旨在提高核磁共振成像的质量并缩短重建时间。我们认为核磁共振成像求解的是一个线性逆问题,我们将其转换为一个基于 TV 正则化的约束优化问题,然后建立了一个加速 ADMM。通过一系列理论推导,我们验证了在一个目标函数为二次凸函数,另一个目标函数为强凸函数的条件下,算法的收敛速度满足 O1/k2。在核磁共振成像实验中,我们选择了五个欠采样模板进行测试,并与其他算法进行了比较,实验结果表明,我们提出的方法不仅提高了运行速度,而且得到了更好的重建结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An accelerated alternating direction method of multiplier for MRI with TV regularisation
Compressed Sensing (CS) is important in the field of image processing and signal processing, and CS-Magnetic Resonance Imaging (MRI) is used to reconstruct image from undersampled k-space data. Total Variation (TV) regularisation is a common technique to improve the sparsity of image, and the Alternating Direction Multiplier Method (ADMM) plays a key role in the variational image processing problem. This paper aims to improve the quality of MRI and shorten the reconstruction time. We consider MRI to solve a linear inverse problem, we convert it into a constrained optimization problem based on TV regularisation, then an accelerated ADMM is established. Through a series of theoretical derivations, we verify that the algorithm satisfies the convergence rate of O1/k2 under the condition that one objective function is quadratically convex and the other is strongly convex. We select five undersampled templates for testing in MRI experiment and compare it with other algorithms, experimental results show that our proposed method not only improves the running speed but also gives better reconstruction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
期刊最新文献
Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T. P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma. Predicting progression in triple-negative breast cancer patients undergoing neoadjuvant chemotherapy: Insights from peritumoral radiomics. Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1