{"title":"零膨胀纵向测量和时间到事件结果的联合建模,并应用于动态预测。","authors":"Mojtaba Ganjali, Taban Baghfalaki, Narayanaswamy Balakrishnan","doi":"10.1177/09622802241268466","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we present a joint modeling approach for zero-inflated longitudinal count measurements and time-to-event outcomes. For the longitudinal sub-model, a mixed effects Hurdle model is utilized, incorporating various distributional assumptions such as zero-inflated Poisson, zero-inflated negative binomial, or zero-inflated generalized Poisson. For the time-to-event sub-model, a Cox proportional hazard model is applied. For the functional form linking the longitudinal outcome history to the hazard of the event, a linear combination is used. This combination is derived from the current values of the linear predictors of Hurdle mixed effects. Some other forms are also considered, including a linear combination of the current slopes of the linear predictors of Hurdle mixed effects as well as the shared random effects. A Markov chain Monte Carlo method is implemented for Bayesian parameter estimation. Dynamic prediction using joint modeling is highly valuable in personalized medicine, as discussed here for joint modeling of zero-inflated longitudinal count measurements and time-to-event outcomes. We assess and demonstrate the effectiveness of the proposed joint models through extensive simulation studies, with a specific emphasis on parameter estimation and dynamic predictions for both over-dispersed and under-dispersed data. We finally apply the joint model to longitudinal microbiome pregnancy and HIV data sets.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1731-1767"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint modeling of zero-inflated longitudinal measurements and time-to-event outcomes with applications to dynamic prediction.\",\"authors\":\"Mojtaba Ganjali, Taban Baghfalaki, Narayanaswamy Balakrishnan\",\"doi\":\"10.1177/09622802241268466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we present a joint modeling approach for zero-inflated longitudinal count measurements and time-to-event outcomes. For the longitudinal sub-model, a mixed effects Hurdle model is utilized, incorporating various distributional assumptions such as zero-inflated Poisson, zero-inflated negative binomial, or zero-inflated generalized Poisson. For the time-to-event sub-model, a Cox proportional hazard model is applied. For the functional form linking the longitudinal outcome history to the hazard of the event, a linear combination is used. This combination is derived from the current values of the linear predictors of Hurdle mixed effects. Some other forms are also considered, including a linear combination of the current slopes of the linear predictors of Hurdle mixed effects as well as the shared random effects. A Markov chain Monte Carlo method is implemented for Bayesian parameter estimation. Dynamic prediction using joint modeling is highly valuable in personalized medicine, as discussed here for joint modeling of zero-inflated longitudinal count measurements and time-to-event outcomes. We assess and demonstrate the effectiveness of the proposed joint models through extensive simulation studies, with a specific emphasis on parameter estimation and dynamic predictions for both over-dispersed and under-dispersed data. We finally apply the joint model to longitudinal microbiome pregnancy and HIV data sets.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1731-1767\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241268466\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241268466","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Joint modeling of zero-inflated longitudinal measurements and time-to-event outcomes with applications to dynamic prediction.
In this article, we present a joint modeling approach for zero-inflated longitudinal count measurements and time-to-event outcomes. For the longitudinal sub-model, a mixed effects Hurdle model is utilized, incorporating various distributional assumptions such as zero-inflated Poisson, zero-inflated negative binomial, or zero-inflated generalized Poisson. For the time-to-event sub-model, a Cox proportional hazard model is applied. For the functional form linking the longitudinal outcome history to the hazard of the event, a linear combination is used. This combination is derived from the current values of the linear predictors of Hurdle mixed effects. Some other forms are also considered, including a linear combination of the current slopes of the linear predictors of Hurdle mixed effects as well as the shared random effects. A Markov chain Monte Carlo method is implemented for Bayesian parameter estimation. Dynamic prediction using joint modeling is highly valuable in personalized medicine, as discussed here for joint modeling of zero-inflated longitudinal count measurements and time-to-event outcomes. We assess and demonstrate the effectiveness of the proposed joint models through extensive simulation studies, with a specific emphasis on parameter estimation and dynamic predictions for both over-dispersed and under-dispersed data. We finally apply the joint model to longitudinal microbiome pregnancy and HIV data sets.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)