加州野火烟雾对哮喘控制的影响:微观模拟法

IF 4.3 2区 医学 Q2 ENVIRONMENTAL SCIENCES Geohealth Pub Date : 2024-10-04 DOI:10.1029/2024GH001037
Sigal Maya, Neeta Thakur, Tarik Benmarhnia, Sheri D. Weiser, James G. Kahn
{"title":"加州野火烟雾对哮喘控制的影响:微观模拟法","authors":"Sigal Maya,&nbsp;Neeta Thakur,&nbsp;Tarik Benmarhnia,&nbsp;Sheri D. Weiser,&nbsp;James G. Kahn","doi":"10.1029/2024GH001037","DOIUrl":null,"url":null,"abstract":"<p>Wildfire smoke exposure leads to poorer health among those with pre-existing conditions such as asthma. Particulate matter in wildfire smoke can worsen asthma control, cause acute exacerbations, and increase health resource utilization (HRU) and costs. Research to date has been retrospective with few opportunities to project changes in underlying asthma control and HRU given exposure to wildfire smoke. Using a microsimulation of 5,000 Californians with asthma, we calculated changes in asthma control distribution, risk of exacerbation, and HRU and cost outcomes in the 16 weeks during and after a wildfire. The model was calibrated against empirical values on asthma control distribution and increased HRU after exposure to wildfire smoke. Without smoke exposure, 48% of the cohort exhibited complete or well control of asthma, and 8% required acute healthcare per cycle. Following two consecutive weeks of wildfire smoke, complete or well control of asthma fell to 27%, with an additional 4% HRU. This corresponds to total additional $601,250 in all-cause medical costs and eight fewer quality-adjusted life years over 16 weeks of model time. Our model found increased asthma health and cost burden due to wildfire smoke that were aligned with empirical evidence from a historic wildfire event. This study establishes a framework for a more nuanced understanding of asthma impacts from wildfire smoke that can help inform the development of public health policies to mitigate harm and promote resilience among asthma patients in the face of climate change.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452629/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of Wildfire Smoke on Asthma Control in California: A Microsimulation Approach\",\"authors\":\"Sigal Maya,&nbsp;Neeta Thakur,&nbsp;Tarik Benmarhnia,&nbsp;Sheri D. Weiser,&nbsp;James G. Kahn\",\"doi\":\"10.1029/2024GH001037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wildfire smoke exposure leads to poorer health among those with pre-existing conditions such as asthma. Particulate matter in wildfire smoke can worsen asthma control, cause acute exacerbations, and increase health resource utilization (HRU) and costs. Research to date has been retrospective with few opportunities to project changes in underlying asthma control and HRU given exposure to wildfire smoke. Using a microsimulation of 5,000 Californians with asthma, we calculated changes in asthma control distribution, risk of exacerbation, and HRU and cost outcomes in the 16 weeks during and after a wildfire. The model was calibrated against empirical values on asthma control distribution and increased HRU after exposure to wildfire smoke. Without smoke exposure, 48% of the cohort exhibited complete or well control of asthma, and 8% required acute healthcare per cycle. Following two consecutive weeks of wildfire smoke, complete or well control of asthma fell to 27%, with an additional 4% HRU. This corresponds to total additional $601,250 in all-cause medical costs and eight fewer quality-adjusted life years over 16 weeks of model time. Our model found increased asthma health and cost burden due to wildfire smoke that were aligned with empirical evidence from a historic wildfire event. This study establishes a framework for a more nuanced understanding of asthma impacts from wildfire smoke that can help inform the development of public health policies to mitigate harm and promote resilience among asthma patients in the face of climate change.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001037\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

接触野火烟雾会导致哮喘等原有疾病患者的健康状况恶化。野火烟雾中的微粒物质会使哮喘控制恶化,导致急性加重,并增加卫生资源利用率(HRU)和成本。迄今为止的研究都是回顾性的,很少有机会预测暴露于野火烟雾后潜在的哮喘控制和医疗资源利用率的变化。通过对 5000 名加利福尼亚哮喘患者进行微观模拟,我们计算了野火期间和野火后 16 周内哮喘控制分布、病情恶化风险以及 HRU 和成本结果的变化。该模型是根据哮喘控制分布的经验值和暴露于野火烟雾后增加的 HRU 进行校准的。在未暴露于烟雾的情况下,48% 的人群表现出完全或良好的哮喘控制,8% 的人群在每个周期需要急性医疗护理。连续两周的野火烟雾暴露后,哮喘完全或良好控制率降至 27%,HRU 增加了 4%。这相当于在 16 周的模型时间内,全因医疗成本增加了 601,250 美元,质量调整生命年减少了 8 年。我们的模型发现,野火烟雾增加了哮喘的健康和成本负担,这与历史性野火事件的经验证据一致。这项研究为更细致地了解野火烟雾对哮喘的影响建立了一个框架,有助于为制定公共卫生政策提供信息,以减轻危害并提高哮喘患者面对气候变化时的适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Wildfire Smoke on Asthma Control in California: A Microsimulation Approach

Wildfire smoke exposure leads to poorer health among those with pre-existing conditions such as asthma. Particulate matter in wildfire smoke can worsen asthma control, cause acute exacerbations, and increase health resource utilization (HRU) and costs. Research to date has been retrospective with few opportunities to project changes in underlying asthma control and HRU given exposure to wildfire smoke. Using a microsimulation of 5,000 Californians with asthma, we calculated changes in asthma control distribution, risk of exacerbation, and HRU and cost outcomes in the 16 weeks during and after a wildfire. The model was calibrated against empirical values on asthma control distribution and increased HRU after exposure to wildfire smoke. Without smoke exposure, 48% of the cohort exhibited complete or well control of asthma, and 8% required acute healthcare per cycle. Following two consecutive weeks of wildfire smoke, complete or well control of asthma fell to 27%, with an additional 4% HRU. This corresponds to total additional $601,250 in all-cause medical costs and eight fewer quality-adjusted life years over 16 weeks of model time. Our model found increased asthma health and cost burden due to wildfire smoke that were aligned with empirical evidence from a historic wildfire event. This study establishes a framework for a more nuanced understanding of asthma impacts from wildfire smoke that can help inform the development of public health policies to mitigate harm and promote resilience among asthma patients in the face of climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geohealth
Geohealth Environmental Science-Pollution
CiteScore
6.80
自引率
6.20%
发文量
124
审稿时长
19 weeks
期刊介绍: GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.
期刊最新文献
A Global Meta-Analysis of the Effects of Greenspaces on COVID-19 Infection and Mortality Rates The Impact of Wildfire Smoke on Asthma Control in California: A Microsimulation Approach Blowin’ in the Wind: Mapping the Dispersion of Metal(loid)s From Atacama Mining Association Between Extreme Heat and Outpatient Visits for Mental Disorders: A Time-Series Analysis in Guangzhou, China A New, Zero-Iteration Analytic Implementation of Wet-Bulb Globe Temperature: Development, Validation, and Comparison With Other Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1