通过实验验证的稳健的人机协作框架

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-09-24 DOI:10.1109/LCSYS.2024.3467188
M. Yusuf Uzun;Emirhan Inanc;Yildiray Yildiz
{"title":"通过实验验证的稳健的人机协作框架","authors":"M. Yusuf Uzun;Emirhan Inanc;Yildiray Yildiz","doi":"10.1109/LCSYS.2024.3467188","DOIUrl":null,"url":null,"abstract":"In this letter, we introduce a robust human-autonomy collaboration framework focusing on flight control applications. The objective is to optimize performance by always keeping the human operator in control of the vehicle while compensating for human limitations. A significant aspect of this framework is its robustness to human intent estimation errors. This is achieved by precisely modulating the automation assistance to prevent undesired interference with the human operator. We provide human-in-the-loop experimental results, demonstrating significant performance improvements when intent estimation is accurate. Experiments also validate that the pilots maintain vehicle control even when the estimation is faulty.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Human-Autonomy Collaboration Framework With Experimental Validation\",\"authors\":\"M. Yusuf Uzun;Emirhan Inanc;Yildiray Yildiz\",\"doi\":\"10.1109/LCSYS.2024.3467188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we introduce a robust human-autonomy collaboration framework focusing on flight control applications. The objective is to optimize performance by always keeping the human operator in control of the vehicle while compensating for human limitations. A significant aspect of this framework is its robustness to human intent estimation errors. This is achieved by precisely modulating the automation assistance to prevent undesired interference with the human operator. We provide human-in-the-loop experimental results, demonstrating significant performance improvements when intent estimation is accurate. Experiments also validate that the pilots maintain vehicle control even when the estimation is faulty.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10690172/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10690172/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们介绍了一个稳健的人类-自主协作框架,重点关注飞行控制应用。其目标是在补偿人类局限性的同时,始终保持人类操作员对飞行器的控制,从而优化性能。该框架的一个重要方面是其对人类意图估计错误的鲁棒性。这是通过精确调节自动化辅助来实现的,以防止对人类操作员造成不必要的干扰。我们提供了人在回路中的实验结果,证明当意图估计准确时,性能会显著提高。实验还验证了即使在估计错误时,驾驶员也能保持对车辆的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Human-Autonomy Collaboration Framework With Experimental Validation
In this letter, we introduce a robust human-autonomy collaboration framework focusing on flight control applications. The objective is to optimize performance by always keeping the human operator in control of the vehicle while compensating for human limitations. A significant aspect of this framework is its robustness to human intent estimation errors. This is achieved by precisely modulating the automation assistance to prevent undesired interference with the human operator. We provide human-in-the-loop experimental results, demonstrating significant performance improvements when intent estimation is accurate. Experiments also validate that the pilots maintain vehicle control even when the estimation is faulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1