Elton Chan, Felix Vogel, Steve Smyth, Owen Barrigar, Misa Ishizawa, Jinwoong Kim, Michael Neish, Douglas Chan, Douglas E. J. Worthy
{"title":"自下而上和自上而下的混合框架解决了加拿大石油和天然气甲烷清单中的差异问题","authors":"Elton Chan, Felix Vogel, Steve Smyth, Owen Barrigar, Misa Ishizawa, Jinwoong Kim, Michael Neish, Douglas Chan, Douglas E. J. Worthy","doi":"10.1038/s43247-024-01728-6","DOIUrl":null,"url":null,"abstract":"Estimating accurate oil and gas methane emissions has been a global challenge, highlighted by a twofold discrepancy between atmospheric measurement-based estimates and emission inventories. The principle of continuous improvement in Canada’s National Inventory Report has led to an unstable baseline in recent years for tracking emission reduction progress. The gaps between previous inventory estimates and inversions exceeded 60%. Here we show that incorporating new source-resolved information derived from low-altitude aerial survey data has narrowed this gap by 80%, reducing the discrepancy to 10% for the 2010–2014 baseline. This study proposes a hybrid emission reporting framework, complemented by an ensemble inversion top-down method using continuous tower-based atmospheric measurements, to establish a stable baseline and provide independent verification. As the 2030 target year for emission reduction approaches, we report a significant 27% decline (19%–34%) in inverse oil and gas methane emissions from 2010 to 2022 in Alberta and Saskatchewan, Canada, and a 41% decline (26%–56%) as calculated using the 2024 official inventory. Oil and gas methane emissions in Alberta and Saskatchewan from 2010–2022 fell by 27% and 41% respectively, according to inversions and the new official inventory incorporating aerial survey data. Both estimates show consistent, statistically significant trends.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01728-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid bottom-up and top-down framework resolves discrepancies in Canada’s oil and gas methane inventories\",\"authors\":\"Elton Chan, Felix Vogel, Steve Smyth, Owen Barrigar, Misa Ishizawa, Jinwoong Kim, Michael Neish, Douglas Chan, Douglas E. J. Worthy\",\"doi\":\"10.1038/s43247-024-01728-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating accurate oil and gas methane emissions has been a global challenge, highlighted by a twofold discrepancy between atmospheric measurement-based estimates and emission inventories. The principle of continuous improvement in Canada’s National Inventory Report has led to an unstable baseline in recent years for tracking emission reduction progress. The gaps between previous inventory estimates and inversions exceeded 60%. Here we show that incorporating new source-resolved information derived from low-altitude aerial survey data has narrowed this gap by 80%, reducing the discrepancy to 10% for the 2010–2014 baseline. This study proposes a hybrid emission reporting framework, complemented by an ensemble inversion top-down method using continuous tower-based atmospheric measurements, to establish a stable baseline and provide independent verification. As the 2030 target year for emission reduction approaches, we report a significant 27% decline (19%–34%) in inverse oil and gas methane emissions from 2010 to 2022 in Alberta and Saskatchewan, Canada, and a 41% decline (26%–56%) as calculated using the 2024 official inventory. Oil and gas methane emissions in Alberta and Saskatchewan from 2010–2022 fell by 27% and 41% respectively, according to inversions and the new official inventory incorporating aerial survey data. Both estimates show consistent, statistically significant trends.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01728-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01728-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01728-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hybrid bottom-up and top-down framework resolves discrepancies in Canada’s oil and gas methane inventories
Estimating accurate oil and gas methane emissions has been a global challenge, highlighted by a twofold discrepancy between atmospheric measurement-based estimates and emission inventories. The principle of continuous improvement in Canada’s National Inventory Report has led to an unstable baseline in recent years for tracking emission reduction progress. The gaps between previous inventory estimates and inversions exceeded 60%. Here we show that incorporating new source-resolved information derived from low-altitude aerial survey data has narrowed this gap by 80%, reducing the discrepancy to 10% for the 2010–2014 baseline. This study proposes a hybrid emission reporting framework, complemented by an ensemble inversion top-down method using continuous tower-based atmospheric measurements, to establish a stable baseline and provide independent verification. As the 2030 target year for emission reduction approaches, we report a significant 27% decline (19%–34%) in inverse oil and gas methane emissions from 2010 to 2022 in Alberta and Saskatchewan, Canada, and a 41% decline (26%–56%) as calculated using the 2024 official inventory. Oil and gas methane emissions in Alberta and Saskatchewan from 2010–2022 fell by 27% and 41% respectively, according to inversions and the new official inventory incorporating aerial survey data. Both estimates show consistent, statistically significant trends.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.