{"title":"悬挂式心脏芯片:用于高通量生成收缩胚胎干细胞衍生心脏球的便携式微流体设备","authors":"Pei‐Tzu Lai, Cheng‐Kun He, Chi‐Han Li, Jefunnie Matahum, Chia‐Yu Tang, Chia‐Hsien Hsu","doi":"10.1002/btm2.10726","DOIUrl":null,"url":null,"abstract":"Stem cell‐derived cardiac spheroids are promising models for cardiac research and drug testing. However, generating contracting cardiac spheroids remains challenging because of the laborious experimental procedure. Here, we present a microfluidic hanging‐heart chip (HH‐chip) that uses a microchannel and flow‐driven system to facilitate cell loading and culture medium replacement operations to reduce the laborious manual handling involved in the generation of a large quantity of cardiac spheroids. The effectiveness of the HH‐chip was demonstrated by simultaneously forming 50 mouse embryonic stem cell‐derived embryonic bodies, which sequentially differentiated into 90% beating cardiac spheroids within 15 days of culture on the chip. A comparison of our HH‐chip method with traditional hanging‐drop and low‐attachment plate methods revealed that the HH‐chip could generate higher contracting proportions of cardiac spheroids with higher expression of cardiac markers. Additionally, we verified that the contraction frequencies of the cardiac spheroids generated from the HH‐chip were sensitive to cardiotoxic drugs. Overall, our results suggest that the microfluidic hanging drop chip‐based approach is a high‐throughput and highly efficient method for generating contracting mouse embryonic stem cell‐derived cardiac spheroids for cardiac toxicity and drug testing applications.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hanging‐heart chip: A portable microfluidic device for high‐throughput generation of contractile embryonic stem cell‐derived cardiac spheroids\",\"authors\":\"Pei‐Tzu Lai, Cheng‐Kun He, Chi‐Han Li, Jefunnie Matahum, Chia‐Yu Tang, Chia‐Hsien Hsu\",\"doi\":\"10.1002/btm2.10726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem cell‐derived cardiac spheroids are promising models for cardiac research and drug testing. However, generating contracting cardiac spheroids remains challenging because of the laborious experimental procedure. Here, we present a microfluidic hanging‐heart chip (HH‐chip) that uses a microchannel and flow‐driven system to facilitate cell loading and culture medium replacement operations to reduce the laborious manual handling involved in the generation of a large quantity of cardiac spheroids. The effectiveness of the HH‐chip was demonstrated by simultaneously forming 50 mouse embryonic stem cell‐derived embryonic bodies, which sequentially differentiated into 90% beating cardiac spheroids within 15 days of culture on the chip. A comparison of our HH‐chip method with traditional hanging‐drop and low‐attachment plate methods revealed that the HH‐chip could generate higher contracting proportions of cardiac spheroids with higher expression of cardiac markers. Additionally, we verified that the contraction frequencies of the cardiac spheroids generated from the HH‐chip were sensitive to cardiotoxic drugs. Overall, our results suggest that the microfluidic hanging drop chip‐based approach is a high‐throughput and highly efficient method for generating contracting mouse embryonic stem cell‐derived cardiac spheroids for cardiac toxicity and drug testing applications.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.10726\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The hanging‐heart chip: A portable microfluidic device for high‐throughput generation of contractile embryonic stem cell‐derived cardiac spheroids
Stem cell‐derived cardiac spheroids are promising models for cardiac research and drug testing. However, generating contracting cardiac spheroids remains challenging because of the laborious experimental procedure. Here, we present a microfluidic hanging‐heart chip (HH‐chip) that uses a microchannel and flow‐driven system to facilitate cell loading and culture medium replacement operations to reduce the laborious manual handling involved in the generation of a large quantity of cardiac spheroids. The effectiveness of the HH‐chip was demonstrated by simultaneously forming 50 mouse embryonic stem cell‐derived embryonic bodies, which sequentially differentiated into 90% beating cardiac spheroids within 15 days of culture on the chip. A comparison of our HH‐chip method with traditional hanging‐drop and low‐attachment plate methods revealed that the HH‐chip could generate higher contracting proportions of cardiac spheroids with higher expression of cardiac markers. Additionally, we verified that the contraction frequencies of the cardiac spheroids generated from the HH‐chip were sensitive to cardiotoxic drugs. Overall, our results suggest that the microfluidic hanging drop chip‐based approach is a high‐throughput and highly efficient method for generating contracting mouse embryonic stem cell‐derived cardiac spheroids for cardiac toxicity and drug testing applications.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.