Stefano Caruso, Margaux Le Vaillant, Stephen J. Barnes, Ville J. Virtanen, Giada Iacono-Marziano
{"title":"加拿大拉布拉多沃韦西湾复合体镍铜钴卵形矿床中的硫化物和铁钛铂液态不溶性","authors":"Stefano Caruso, Margaux Le Vaillant, Stephen J. Barnes, Ville J. Virtanen, Giada Iacono-Marziano","doi":"10.1007/s00126-024-01319-7","DOIUrl":null,"url":null,"abstract":"<p>In the Voisey’s Bay complex, sulfide-matrix breccias developed through the percolation of dense sulfide melt, leading to the displacement of the silicate melt within partially molten silicate-matrix breccias. In these sulfide matrix-breccias, hydrous silicate rims are commonly present at the interface between the sulfide matrix and the silicate framework. Multiple lines of evidence support a magmatic origin of these hornblende-biotite rims, which was largely coeval with the emplacement of the sulfide melt in the magmatic breccias. The formation of the hornblende-biotite rims required the addition of alkalis and water that could not have entirely been sourced from either the sulfide melt or the silicate framework. Through the integration of compositional maps with major and trace element analyses of the main accessory minerals, we propose that the critical components required for the development of the hydrous silicate rims in sulfide-matrix breccias originated from an immiscible Fe-Ti-P melt. Distinct textural and compositional features of apatite, hercynite, ilmenite and magnetite support the presence of small amounts of Fe-Ti-P melt in the sulfide melt. This Fe-Ti-P melt likely formed through melt immiscibility in the early stages of the development of the Voisey’s Bay complex, and was transported in the magma conduits together with the sulfide melt.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfide and Fe-Ti-P liquid immiscibility in the Ni-Cu-Co ovoid deposit of the Voisey’s Bay complex, Labrador, Canada\",\"authors\":\"Stefano Caruso, Margaux Le Vaillant, Stephen J. Barnes, Ville J. Virtanen, Giada Iacono-Marziano\",\"doi\":\"10.1007/s00126-024-01319-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the Voisey’s Bay complex, sulfide-matrix breccias developed through the percolation of dense sulfide melt, leading to the displacement of the silicate melt within partially molten silicate-matrix breccias. In these sulfide matrix-breccias, hydrous silicate rims are commonly present at the interface between the sulfide matrix and the silicate framework. Multiple lines of evidence support a magmatic origin of these hornblende-biotite rims, which was largely coeval with the emplacement of the sulfide melt in the magmatic breccias. The formation of the hornblende-biotite rims required the addition of alkalis and water that could not have entirely been sourced from either the sulfide melt or the silicate framework. Through the integration of compositional maps with major and trace element analyses of the main accessory minerals, we propose that the critical components required for the development of the hydrous silicate rims in sulfide-matrix breccias originated from an immiscible Fe-Ti-P melt. Distinct textural and compositional features of apatite, hercynite, ilmenite and magnetite support the presence of small amounts of Fe-Ti-P melt in the sulfide melt. This Fe-Ti-P melt likely formed through melt immiscibility in the early stages of the development of the Voisey’s Bay complex, and was transported in the magma conduits together with the sulfide melt.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01319-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01319-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Sulfide and Fe-Ti-P liquid immiscibility in the Ni-Cu-Co ovoid deposit of the Voisey’s Bay complex, Labrador, Canada
In the Voisey’s Bay complex, sulfide-matrix breccias developed through the percolation of dense sulfide melt, leading to the displacement of the silicate melt within partially molten silicate-matrix breccias. In these sulfide matrix-breccias, hydrous silicate rims are commonly present at the interface between the sulfide matrix and the silicate framework. Multiple lines of evidence support a magmatic origin of these hornblende-biotite rims, which was largely coeval with the emplacement of the sulfide melt in the magmatic breccias. The formation of the hornblende-biotite rims required the addition of alkalis and water that could not have entirely been sourced from either the sulfide melt or the silicate framework. Through the integration of compositional maps with major and trace element analyses of the main accessory minerals, we propose that the critical components required for the development of the hydrous silicate rims in sulfide-matrix breccias originated from an immiscible Fe-Ti-P melt. Distinct textural and compositional features of apatite, hercynite, ilmenite and magnetite support the presence of small amounts of Fe-Ti-P melt in the sulfide melt. This Fe-Ti-P melt likely formed through melt immiscibility in the early stages of the development of the Voisey’s Bay complex, and was transported in the magma conduits together with the sulfide melt.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.