{"title":"红毛丹(Nephelium lappaceum L.)果皮多酚通过调节肠道微生物群和代谢物对 2 型糖尿病小鼠的降血糖作用","authors":"Qiuming Liu, Qingyu Ma, Jiao Li, Liping Sun, Yongliang Zhuang","doi":"10.1002/mnfr.202400555","DOIUrl":null,"url":null,"abstract":"<p><strong>Scope: </strong>Type 2 diabetes mellitus (T2DM) is a metabolic disease with a major global public health effect. Rambutan peel polyphenols (RPPs) have been reported to exert hypoglycemic activity. However, few studies have been explored from the viewpoint of gut microbiota and its metabolites.</p><p><strong>Methods and results: </strong>RPPs are administered by gavage to a mice model of T2DM established by using a high-fat diet combined with streptozotocin. It finds that RPPs treatment alleviates hyperglycemia symptoms by improving glucolipid metabolism and liver function. Immunohistochemistry indicates that the antihyperglycemic effect of RPPs is regulated by the IRS-1/PI3K/AKT/GSK3β signaling pathway. RPPs treatment remodels the structure of gut microbiota (Odoribacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Turicibacter, Erysipelatoclostridium, and Tuzzerella) and enriches the metabolites (RPPs-derived urolithins, short-chain fatty acids, dehydrocholic acid, (+)-catechin, dihydroberberine, pterostilbene, and artesunate) associated with diabetes regulation in T2DM mice. The effects of RPPs in ameliorating glycolipid metabolism disorders are correlated with differential gut microbiota and metabolites.</p><p><strong>Conclusion: </strong>The gut microbiota and its metabolites are key targets for the hypoglycemic effects of RPPs.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e2400555"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites.\",\"authors\":\"Qiuming Liu, Qingyu Ma, Jiao Li, Liping Sun, Yongliang Zhuang\",\"doi\":\"10.1002/mnfr.202400555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Scope: </strong>Type 2 diabetes mellitus (T2DM) is a metabolic disease with a major global public health effect. Rambutan peel polyphenols (RPPs) have been reported to exert hypoglycemic activity. However, few studies have been explored from the viewpoint of gut microbiota and its metabolites.</p><p><strong>Methods and results: </strong>RPPs are administered by gavage to a mice model of T2DM established by using a high-fat diet combined with streptozotocin. It finds that RPPs treatment alleviates hyperglycemia symptoms by improving glucolipid metabolism and liver function. Immunohistochemistry indicates that the antihyperglycemic effect of RPPs is regulated by the IRS-1/PI3K/AKT/GSK3β signaling pathway. RPPs treatment remodels the structure of gut microbiota (Odoribacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Turicibacter, Erysipelatoclostridium, and Tuzzerella) and enriches the metabolites (RPPs-derived urolithins, short-chain fatty acids, dehydrocholic acid, (+)-catechin, dihydroberberine, pterostilbene, and artesunate) associated with diabetes regulation in T2DM mice. The effects of RPPs in ameliorating glycolipid metabolism disorders are correlated with differential gut microbiota and metabolites.</p><p><strong>Conclusion: </strong>The gut microbiota and its metabolites are key targets for the hypoglycemic effects of RPPs.</p>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\" \",\"pages\":\"e2400555\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.202400555\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400555","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites.
Scope: Type 2 diabetes mellitus (T2DM) is a metabolic disease with a major global public health effect. Rambutan peel polyphenols (RPPs) have been reported to exert hypoglycemic activity. However, few studies have been explored from the viewpoint of gut microbiota and its metabolites.
Methods and results: RPPs are administered by gavage to a mice model of T2DM established by using a high-fat diet combined with streptozotocin. It finds that RPPs treatment alleviates hyperglycemia symptoms by improving glucolipid metabolism and liver function. Immunohistochemistry indicates that the antihyperglycemic effect of RPPs is regulated by the IRS-1/PI3K/AKT/GSK3β signaling pathway. RPPs treatment remodels the structure of gut microbiota (Odoribacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Turicibacter, Erysipelatoclostridium, and Tuzzerella) and enriches the metabolites (RPPs-derived urolithins, short-chain fatty acids, dehydrocholic acid, (+)-catechin, dihydroberberine, pterostilbene, and artesunate) associated with diabetes regulation in T2DM mice. The effects of RPPs in ameliorating glycolipid metabolism disorders are correlated with differential gut microbiota and metabolites.
Conclusion: The gut microbiota and its metabolites are key targets for the hypoglycemic effects of RPPs.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.