Fangyue Zhang, Joel A Biederman, Nathan A Pierce, Daniel L Potts, Sasha C Reed, William K Smith
{"title":"不同冷季降水总量对半干旱混合草地生态系统碳通量的直接影响和遗留影响","authors":"Fangyue Zhang, Joel A Biederman, Nathan A Pierce, Daniel L Potts, Sasha C Reed, William K Smith","doi":"10.1111/pce.15175","DOIUrl":null,"url":null,"abstract":"<p><p>In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"943-952"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland.\",\"authors\":\"Fangyue Zhang, Joel A Biederman, Nathan A Pierce, Daniel L Potts, Sasha C Reed, William K Smith\",\"doi\":\"10.1111/pce.15175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"943-952\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15175\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15175","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland.
In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.