Xu Zhong, Jian He, Taigui Ma, Guobin Chen, Yong Zhang, Min Zhang, Lei Tang, Yong Li, Lingling Fan
{"title":"小分子芳基噻唑胺衍生物的合成和抗真菌活性。","authors":"Xu Zhong, Jian He, Taigui Ma, Guobin Chen, Yong Zhang, Min Zhang, Lei Tang, Yong Li, Lingling Fan","doi":"10.1007/s11030-024-11002-8","DOIUrl":null,"url":null,"abstract":"<p><p>Developing new fungicides to compensate for the deficiencies of existing fungicides resistance in phytopathogenic fungi is a research hotspot in the field of pesticides. Aiming to discover novel template small molecules with excellent antifungal activity, thirty-eight arylthiazolamine derivatives were synthesized through bromination, cyclization, halogenation, and acylation reactions. The synthesized compounds were screened for antifungal activity against ten typical fungal pathogens, and some halogenated arylthiazolamines and amides exhibited excellent broad-spectrum antifungal activity, especially compounds 4m (3.96-47.76 μg/mL), 5k (0.10-7.70 μg/mL) and 5n (2.08-11.21 μg/mL). Among them, compound 5k provided comparable protection and curative effects to chloroticonil and boscalid against B. dothidea and V. mali infection in apple and apple tree branches, respectively, and it could exert antifungal effects by inhibiting the differentiation of mycelium spores, spore germination, and bud tube growth. This study provides high-efficiency and inexpensive candidate compounds for managing of diseases caused by plant pathogenic fungi.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antifungal activities of small molecule arylthiazolamine derivatives.\",\"authors\":\"Xu Zhong, Jian He, Taigui Ma, Guobin Chen, Yong Zhang, Min Zhang, Lei Tang, Yong Li, Lingling Fan\",\"doi\":\"10.1007/s11030-024-11002-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing new fungicides to compensate for the deficiencies of existing fungicides resistance in phytopathogenic fungi is a research hotspot in the field of pesticides. Aiming to discover novel template small molecules with excellent antifungal activity, thirty-eight arylthiazolamine derivatives were synthesized through bromination, cyclization, halogenation, and acylation reactions. The synthesized compounds were screened for antifungal activity against ten typical fungal pathogens, and some halogenated arylthiazolamines and amides exhibited excellent broad-spectrum antifungal activity, especially compounds 4m (3.96-47.76 μg/mL), 5k (0.10-7.70 μg/mL) and 5n (2.08-11.21 μg/mL). Among them, compound 5k provided comparable protection and curative effects to chloroticonil and boscalid against B. dothidea and V. mali infection in apple and apple tree branches, respectively, and it could exert antifungal effects by inhibiting the differentiation of mycelium spores, spore germination, and bud tube growth. This study provides high-efficiency and inexpensive candidate compounds for managing of diseases caused by plant pathogenic fungi.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11002-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11002-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Synthesis and antifungal activities of small molecule arylthiazolamine derivatives.
Developing new fungicides to compensate for the deficiencies of existing fungicides resistance in phytopathogenic fungi is a research hotspot in the field of pesticides. Aiming to discover novel template small molecules with excellent antifungal activity, thirty-eight arylthiazolamine derivatives were synthesized through bromination, cyclization, halogenation, and acylation reactions. The synthesized compounds were screened for antifungal activity against ten typical fungal pathogens, and some halogenated arylthiazolamines and amides exhibited excellent broad-spectrum antifungal activity, especially compounds 4m (3.96-47.76 μg/mL), 5k (0.10-7.70 μg/mL) and 5n (2.08-11.21 μg/mL). Among them, compound 5k provided comparable protection and curative effects to chloroticonil and boscalid against B. dothidea and V. mali infection in apple and apple tree branches, respectively, and it could exert antifungal effects by inhibiting the differentiation of mycelium spores, spore germination, and bud tube growth. This study provides high-efficiency and inexpensive candidate compounds for managing of diseases caused by plant pathogenic fungi.