{"title":"术前高级弥散磁共振成像在评估低级别胶质瘤术后复发中的应用。","authors":"Luyue Gao, Yuanhao Li, Hongquan Zhu, Yufei Liu, Shihui Li, Li Li, Jiaxuan Zhang, Nanxi Shen, Wenzhen Zhu","doi":"10.1186/s40644-024-00782-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recurrence of lower grade glioma (LrGG) appeared to be unavoidable despite considerable research performed in last decades. Thus, we evaluated the postoperative recurrence within two years after the surgery in patients with LrGG by preoperative advanced diffusion magnetic resonance imaging (dMRI).</p><p><strong>Materials and methods: </strong>48 patients with lower-grade gliomas (23 recurrence, 25 nonrecurrence) were recruited into this study. Different models of dMRI were reconstructed, including apparent fiber density (AFD), white matter tract integrity (WMTI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), Bingham NODDI and standard model imaging (SMI). Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was used to construct a multiparametric prediction model for the diagnosis of postoperative recurrence.</p><p><strong>Results: </strong>The parameters derived from each dMRI model, including AFD, axon water fraction (AWF), mean diffusivity (MD), mean kurtosis (MK), fractional anisotropy (FA), intracellular volume fraction (ICVF), extra-axonal perpendicular diffusivity (De<sup>⊥</sup>), extra-axonal parallel diffusivity (De<sup>∥</sup>) and free water fraction (fw), showed significant differences between nonrecurrence group and recurrence group. The extra-axonal perpendicular diffusivity (De<sup>⊥</sup>) had the highest area under curve (AUC = 0.885), which was significantly higher than others. The variable importance for the projection (VIP) value of De<sup>⊥</sup> was also the highest. The AUC value of the multiparametric prediction model merging AFD, WMTI, DTI, DKI, NODDI, Bingham NODDI and SMI was up to 0.96.</p><p><strong>Conclusion: </strong>Preoperative advanced dMRI showed great efficacy in evaluating postoperative recurrence of LrGG and De<sup>⊥</sup> of SMI might be a valuable marker.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"134"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of preoperative advanced diffusion magnetic resonance imaging in evaluating the postoperative recurrence of lower grade gliomas.\",\"authors\":\"Luyue Gao, Yuanhao Li, Hongquan Zhu, Yufei Liu, Shihui Li, Li Li, Jiaxuan Zhang, Nanxi Shen, Wenzhen Zhu\",\"doi\":\"10.1186/s40644-024-00782-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recurrence of lower grade glioma (LrGG) appeared to be unavoidable despite considerable research performed in last decades. Thus, we evaluated the postoperative recurrence within two years after the surgery in patients with LrGG by preoperative advanced diffusion magnetic resonance imaging (dMRI).</p><p><strong>Materials and methods: </strong>48 patients with lower-grade gliomas (23 recurrence, 25 nonrecurrence) were recruited into this study. Different models of dMRI were reconstructed, including apparent fiber density (AFD), white matter tract integrity (WMTI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), Bingham NODDI and standard model imaging (SMI). Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was used to construct a multiparametric prediction model for the diagnosis of postoperative recurrence.</p><p><strong>Results: </strong>The parameters derived from each dMRI model, including AFD, axon water fraction (AWF), mean diffusivity (MD), mean kurtosis (MK), fractional anisotropy (FA), intracellular volume fraction (ICVF), extra-axonal perpendicular diffusivity (De<sup>⊥</sup>), extra-axonal parallel diffusivity (De<sup>∥</sup>) and free water fraction (fw), showed significant differences between nonrecurrence group and recurrence group. The extra-axonal perpendicular diffusivity (De<sup>⊥</sup>) had the highest area under curve (AUC = 0.885), which was significantly higher than others. The variable importance for the projection (VIP) value of De<sup>⊥</sup> was also the highest. The AUC value of the multiparametric prediction model merging AFD, WMTI, DTI, DKI, NODDI, Bingham NODDI and SMI was up to 0.96.</p><p><strong>Conclusion: </strong>Preoperative advanced dMRI showed great efficacy in evaluating postoperative recurrence of LrGG and De<sup>⊥</sup> of SMI might be a valuable marker.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"24 1\",\"pages\":\"134\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-024-00782-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00782-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Application of preoperative advanced diffusion magnetic resonance imaging in evaluating the postoperative recurrence of lower grade gliomas.
Background: Recurrence of lower grade glioma (LrGG) appeared to be unavoidable despite considerable research performed in last decades. Thus, we evaluated the postoperative recurrence within two years after the surgery in patients with LrGG by preoperative advanced diffusion magnetic resonance imaging (dMRI).
Materials and methods: 48 patients with lower-grade gliomas (23 recurrence, 25 nonrecurrence) were recruited into this study. Different models of dMRI were reconstructed, including apparent fiber density (AFD), white matter tract integrity (WMTI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), Bingham NODDI and standard model imaging (SMI). Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was used to construct a multiparametric prediction model for the diagnosis of postoperative recurrence.
Results: The parameters derived from each dMRI model, including AFD, axon water fraction (AWF), mean diffusivity (MD), mean kurtosis (MK), fractional anisotropy (FA), intracellular volume fraction (ICVF), extra-axonal perpendicular diffusivity (De⊥), extra-axonal parallel diffusivity (De∥) and free water fraction (fw), showed significant differences between nonrecurrence group and recurrence group. The extra-axonal perpendicular diffusivity (De⊥) had the highest area under curve (AUC = 0.885), which was significantly higher than others. The variable importance for the projection (VIP) value of De⊥ was also the highest. The AUC value of the multiparametric prediction model merging AFD, WMTI, DTI, DKI, NODDI, Bingham NODDI and SMI was up to 0.96.
Conclusion: Preoperative advanced dMRI showed great efficacy in evaluating postoperative recurrence of LrGG and De⊥ of SMI might be a valuable marker.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.