Yu-Chen Xie , Zhi-Wei Ye , Jv-Liang Dai , Hao-Hong Chen , Jian-Guo Jiang
{"title":"巴达维杜莎藻番茄红素β-环化酶的表征,以提高β-胡萝卜素产量和耐盐性。","authors":"Yu-Chen Xie , Zhi-Wei Ye , Jv-Liang Dai , Hao-Hong Chen , Jian-Guo Jiang","doi":"10.1016/j.enzmictec.2024.110520","DOIUrl":null,"url":null,"abstract":"<div><div><em>Dunaliella</em> can accumulate more β-carotene (10 % or even more of the dry weight of cells) than any other species. Lycopene β-cyclase (LcyB) is the key enzyme in the catalysis of lycopene to β-carotene. In the present research, we used <em>Escherichia coli</em> BL21 (DE3) as host to construct two different types of engineering bacteria, one expressing the <em>D. bardawil</em> LcyB and the other expressing the orthologue <em>Erwinia uredovora</em> crtY. The catalytic ability of LcyB and CrtY were evaluated by comparing the β-carotene yields of the two <em>E. coli</em> BL21(DE3) strains, whose salt tolerance was simultaneously compared by cultivated them under different NaCl concentrations (1 %, 2 %, and 4 %). We also interfered with the <em>LcyB</em> gene to investigate the effect of <em>LcyB</em> in <em>D. bardawil</em>. Results displayed that the β-carotene yield of the LcyB-transformant significantly increased by about 48 % compared with the crtY-transformant. Additionally, <em>LcyB</em> was verified to be able to enhance the salt tolerance of <em>E. coli</em> BL21 (DE3). It is concluded that <em>D. bardawil</em> LcyB not only has better catalytic ability but also is able to confer salt tolerance to cells. Interfering <em>D. bardawil LcyB</em> induced the low expression of LcyB and the changes of growth and carotenoids metabolism in <em>D. bardawil.</em></div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of lycopene β-cyclase from Dunaliella bardawil for enhanced β-carotene production and salt tolerance\",\"authors\":\"Yu-Chen Xie , Zhi-Wei Ye , Jv-Liang Dai , Hao-Hong Chen , Jian-Guo Jiang\",\"doi\":\"10.1016/j.enzmictec.2024.110520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Dunaliella</em> can accumulate more β-carotene (10 % or even more of the dry weight of cells) than any other species. Lycopene β-cyclase (LcyB) is the key enzyme in the catalysis of lycopene to β-carotene. In the present research, we used <em>Escherichia coli</em> BL21 (DE3) as host to construct two different types of engineering bacteria, one expressing the <em>D. bardawil</em> LcyB and the other expressing the orthologue <em>Erwinia uredovora</em> crtY. The catalytic ability of LcyB and CrtY were evaluated by comparing the β-carotene yields of the two <em>E. coli</em> BL21(DE3) strains, whose salt tolerance was simultaneously compared by cultivated them under different NaCl concentrations (1 %, 2 %, and 4 %). We also interfered with the <em>LcyB</em> gene to investigate the effect of <em>LcyB</em> in <em>D. bardawil</em>. Results displayed that the β-carotene yield of the LcyB-transformant significantly increased by about 48 % compared with the crtY-transformant. Additionally, <em>LcyB</em> was verified to be able to enhance the salt tolerance of <em>E. coli</em> BL21 (DE3). It is concluded that <em>D. bardawil</em> LcyB not only has better catalytic ability but also is able to confer salt tolerance to cells. Interfering <em>D. bardawil LcyB</em> induced the low expression of LcyB and the changes of growth and carotenoids metabolism in <em>D. bardawil.</em></div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924001273\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924001273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Characterization of lycopene β-cyclase from Dunaliella bardawil for enhanced β-carotene production and salt tolerance
Dunaliella can accumulate more β-carotene (10 % or even more of the dry weight of cells) than any other species. Lycopene β-cyclase (LcyB) is the key enzyme in the catalysis of lycopene to β-carotene. In the present research, we used Escherichia coli BL21 (DE3) as host to construct two different types of engineering bacteria, one expressing the D. bardawil LcyB and the other expressing the orthologue Erwinia uredovora crtY. The catalytic ability of LcyB and CrtY were evaluated by comparing the β-carotene yields of the two E. coli BL21(DE3) strains, whose salt tolerance was simultaneously compared by cultivated them under different NaCl concentrations (1 %, 2 %, and 4 %). We also interfered with the LcyB gene to investigate the effect of LcyB in D. bardawil. Results displayed that the β-carotene yield of the LcyB-transformant significantly increased by about 48 % compared with the crtY-transformant. Additionally, LcyB was verified to be able to enhance the salt tolerance of E. coli BL21 (DE3). It is concluded that D. bardawil LcyB not only has better catalytic ability but also is able to confer salt tolerance to cells. Interfering D. bardawil LcyB induced the low expression of LcyB and the changes of growth and carotenoids metabolism in D. bardawil.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.