Jayanth Rajan, Ross Rosen, Daniel Karasik, John Richter, Claudia Cabrera, Brian D'Anza, Kenneth Rodriguez, Sanjeet V Rangarajan
{"title":"人工智能在检测嗜酸性粒细胞慢性鼻炎方面的实用性初步评述。","authors":"Jayanth Rajan, Ross Rosen, Daniel Karasik, John Richter, Claudia Cabrera, Brian D'Anza, Kenneth Rodriguez, Sanjeet V Rangarajan","doi":"10.1002/alr.23463","DOIUrl":null,"url":null,"abstract":"<p><strong>Key points: </strong>While typically diagnosed with biopsy, ECRS may be predicted preoperatively with the use of AI. Various AI models have been used, with pooled sensitivity of 0.857 and specificity of 0.850. We found no statistically significant difference between the accuracy of various AI models.</p>","PeriodicalId":13716,"journal":{"name":"International Forum of Allergy & Rhinology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preliminary review of the utility of artificial intelligence to detect eosinophilic chronic rhinosinusitis.\",\"authors\":\"Jayanth Rajan, Ross Rosen, Daniel Karasik, John Richter, Claudia Cabrera, Brian D'Anza, Kenneth Rodriguez, Sanjeet V Rangarajan\",\"doi\":\"10.1002/alr.23463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key points: </strong>While typically diagnosed with biopsy, ECRS may be predicted preoperatively with the use of AI. Various AI models have been used, with pooled sensitivity of 0.857 and specificity of 0.850. We found no statistically significant difference between the accuracy of various AI models.</p>\",\"PeriodicalId\":13716,\"journal\":{\"name\":\"International Forum of Allergy & Rhinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Forum of Allergy & Rhinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/alr.23463\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Forum of Allergy & Rhinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/alr.23463","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
要点:虽然 ECRS 通常是通过活组织检查诊断出来的,但也可以通过 AI 进行术前预测。我们使用了各种人工智能模型,汇总灵敏度为 0.857,特异度为 0.850。我们发现各种人工智能模型的准确性在统计学上没有明显差异。
A preliminary review of the utility of artificial intelligence to detect eosinophilic chronic rhinosinusitis.
Key points: While typically diagnosed with biopsy, ECRS may be predicted preoperatively with the use of AI. Various AI models have been used, with pooled sensitivity of 0.857 and specificity of 0.850. We found no statistically significant difference between the accuracy of various AI models.
期刊介绍:
International Forum of Allergy & Rhinologyis a peer-reviewed scientific journal, and the Official Journal of the American Rhinologic Society and the American Academy of Otolaryngic Allergy.
International Forum of Allergy Rhinology provides a forum for clinical researchers, basic scientists, clinicians, and others to publish original research and explore controversies in the medical and surgical treatment of patients with otolaryngic allergy, rhinologic, and skull base conditions. The application of current research to the management of otolaryngic allergy, rhinologic, and skull base diseases and the need for further investigation will be highlighted.