利用超高效液相色谱-四极杆-精确轨道阱质谱法和分子对接技术快速确定西诺明在大鼠体内的潜在活性特征

IF 2.8 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of separation science Pub Date : 2024-10-07 DOI:10.1002/jssc.202400486
Haixia Li, KaiLin Li, Wenhui Cheng, Mingjuan Liu, Linwen Wen, Zexu Zhang, Wendan Zhang, Jin Su, Wei Cai
{"title":"利用超高效液相色谱-四极杆-精确轨道阱质谱法和分子对接技术快速确定西诺明在大鼠体内的潜在活性特征","authors":"Haixia Li,&nbsp;KaiLin Li,&nbsp;Wenhui Cheng,&nbsp;Mingjuan Liu,&nbsp;Linwen Wen,&nbsp;Zexu Zhang,&nbsp;Wendan Zhang,&nbsp;Jin Su,&nbsp;Wei Cai","doi":"10.1002/jssc.202400486","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Sinomenium acutum</i> (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Characterization of the Potential Active of Sinomenine in Rats by Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry and Molecular Docking\",\"authors\":\"Haixia Li,&nbsp;KaiLin Li,&nbsp;Wenhui Cheng,&nbsp;Mingjuan Liu,&nbsp;Linwen Wen,&nbsp;Zexu Zhang,&nbsp;Wendan Zhang,&nbsp;Jin Su,&nbsp;Wei Cai\",\"doi\":\"10.1002/jssc.202400486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Sinomenium acutum</i> (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400486\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400486","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

Sinomenium acutum (Thunb.) Rehd. et Wils 被广泛用于治疗类风湿性关节炎,其生物碱化合物 sinomenine(SIN)以显著的抗炎特性而闻名。然而,尽管其应用广泛,但人们对 SIN 的体内抗炎机制和代谢途径仍不完全了解。本研究采用超高效液相色谱法结合四极杆-极性轨道阱质谱法和分子对接法,建立了一种快速可靠的方法,对大鼠血浆、尿液和粪便中的 SIN 和 69 种代谢物进行了鉴定和表征,揭示了羟基化、去甲基化、硫酸化和葡萄糖醛酸化等主要代谢途径。分子对接结果显示,第一阶段反应,包括脱甲基化、脱甲基化、脱氢和二羟基化,以及它们的复合反应,是影响 SIN 体内抗炎活性的关键。M28、M36 和 M59 可能是 SIN 在体内最具抗炎活性的代谢物。这项全面的分析揭示了 SIN 的代谢途径,有助于深入了解其生物过程,并提出了一种探索药物活性成分的新方法。这些发现为进一步了解 SIN 的抗炎机制铺平了道路,对开发新的治疗策略大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Characterization of the Potential Active of Sinomenine in Rats by Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry and Molecular Docking

Sinomenium acutum (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of separation science
Journal of separation science 化学-分析化学
CiteScore
6.30
自引率
16.10%
发文量
408
审稿时长
1.8 months
期刊介绍: The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.
期刊最新文献
Rapid Characterization of the Constituents in Classic Chinese Medicine Formula Guyinjian Using Ultra-High-Performance Liquid Chromatography With Quadrupole Time-of-Flight Mass Spectrometry Electrodeposition of Zn–Al-Layered Double Hydroxides With Interlayer Modification by Ibuprofen as Fiber Coating for Solid Phase Microextraction of Nonsteroidal Anti-Inflammatory Drugs Rapid and Simultaneous Determination of 13 Sulfonamides in Soil by Matrix Solid-Phase Dispersion With High-Performance Liquid Chromatography-Tandem Mass Spectrometry Rapid Identification of Chemical Constituents of Sanhua Decoction in Vivo and in Vitro and the Metabolites of Rhubarb Anthraquinone Aglycone by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry Thrombin Immobilized on Magnetic Core-Shell Mesoporous Silica Nanoparticles for Screening of the Enzyme Inhibitors From Notopterygium Incisum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1