{"title":"预测复杂弹性波发射器远场响应的半分析框架。","authors":"Siddhesh Raorane, Tadeusz Stepinski, Pawel Packo","doi":"10.1016/j.ultras.2024.107483","DOIUrl":null,"url":null,"abstract":"<div><div>Applications of guided waves in various fields of engineering and science rely on elastic wave emitters for wave generation. Accurate prediction and understanding of the far-field responses of these wave emitters are crucial for the reliable and efficient application of guided waves-based technologies. In this paper, we propose a novel semi-analytical framework capable of predicting the far-field response of complex wave emitters of arbitrary shape and internal structure in any type of substrate. This framework is general, and is not confined to specific methods, enhancing its versatility. We applied the proposed semi-analytical framework to predict the directivity patterns of two different macro-fiber composite transducers, accurately modeled using their exact topologies. The framework’s validity was experimentally confirmed by comparing the predicted directivity patterns with the results obtained from experimental measurements.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-analytical framework for predicting far-field responses of complex elastic waves emitters\",\"authors\":\"Siddhesh Raorane, Tadeusz Stepinski, Pawel Packo\",\"doi\":\"10.1016/j.ultras.2024.107483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Applications of guided waves in various fields of engineering and science rely on elastic wave emitters for wave generation. Accurate prediction and understanding of the far-field responses of these wave emitters are crucial for the reliable and efficient application of guided waves-based technologies. In this paper, we propose a novel semi-analytical framework capable of predicting the far-field response of complex wave emitters of arbitrary shape and internal structure in any type of substrate. This framework is general, and is not confined to specific methods, enhancing its versatility. We applied the proposed semi-analytical framework to predict the directivity patterns of two different macro-fiber composite transducers, accurately modeled using their exact topologies. The framework’s validity was experimentally confirmed by comparing the predicted directivity patterns with the results obtained from experimental measurements.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002464\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002464","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A semi-analytical framework for predicting far-field responses of complex elastic waves emitters
Applications of guided waves in various fields of engineering and science rely on elastic wave emitters for wave generation. Accurate prediction and understanding of the far-field responses of these wave emitters are crucial for the reliable and efficient application of guided waves-based technologies. In this paper, we propose a novel semi-analytical framework capable of predicting the far-field response of complex wave emitters of arbitrary shape and internal structure in any type of substrate. This framework is general, and is not confined to specific methods, enhancing its versatility. We applied the proposed semi-analytical framework to predict the directivity patterns of two different macro-fiber composite transducers, accurately modeled using their exact topologies. The framework’s validity was experimentally confirmed by comparing the predicted directivity patterns with the results obtained from experimental measurements.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.