一种新的非参数统计推断方法,用于推断多物种的龛位重叠。

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-10-08 DOI:10.1002/bimj.202400013
Patrick B. Langthaler, Kai-Philipp Gladow, Oliver Krüger, Jonas Beck
{"title":"一种新的非参数统计推断方法,用于推断多物种的龛位重叠。","authors":"Patrick B. Langthaler,&nbsp;Kai-Philipp Gladow,&nbsp;Oliver Krüger,&nbsp;Jonas Beck","doi":"10.1002/bimj.202400013","DOIUrl":null,"url":null,"abstract":"<p>The understanding of species interactions and ecosystem dynamics hinges upon the study of ecological niches. Quantifying the overlap of Hutchinsonian-niches has garnered significant attention, with many recent publications addressing the issue. Prior work on estimating niche overlap often did not provide confidence intervals or assumed multivariate normality, seriously limiting applications in ecology, and biodiversity research. This paper extends a nonparametric approach, previously applied to the two-species case, to multiple species. For estimation, a consistent plug-in estimator based on rank sums is proposed and its asymptotic distribution is derived under weak conditions. The novel methodology is then applied to a study comparing the ecological niches of the Eurasian eagle owl, common buzzard, and red kite. These species share a habitat in Central Europe but exhibit distinct population trends. The analysis explores their breeding habitat preferences, considering the intricate competition dynamics and utilizing the nonparametric approach to niche overlap estimation. Our proposed method provides a valuable inferential tool for the quantitative evaluation of differences and overlap between niches.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400013","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Nonparametric Statistical Inference for Niche Overlap in Multiple Species\",\"authors\":\"Patrick B. Langthaler,&nbsp;Kai-Philipp Gladow,&nbsp;Oliver Krüger,&nbsp;Jonas Beck\",\"doi\":\"10.1002/bimj.202400013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The understanding of species interactions and ecosystem dynamics hinges upon the study of ecological niches. Quantifying the overlap of Hutchinsonian-niches has garnered significant attention, with many recent publications addressing the issue. Prior work on estimating niche overlap often did not provide confidence intervals or assumed multivariate normality, seriously limiting applications in ecology, and biodiversity research. This paper extends a nonparametric approach, previously applied to the two-species case, to multiple species. For estimation, a consistent plug-in estimator based on rank sums is proposed and its asymptotic distribution is derived under weak conditions. The novel methodology is then applied to a study comparing the ecological niches of the Eurasian eagle owl, common buzzard, and red kite. These species share a habitat in Central Europe but exhibit distinct population trends. The analysis explores their breeding habitat preferences, considering the intricate competition dynamics and utilizing the nonparametric approach to niche overlap estimation. Our proposed method provides a valuable inferential tool for the quantitative evaluation of differences and overlap between niches.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 7\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400013\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对物种相互作用和生态系统动态的了解取决于对生态位的研究。量化哈钦森生态位的重叠已经引起了极大的关注,最近有许多出版物都在讨论这个问题。之前估计生态位重叠的工作通常不提供置信区间或假定多变量正态性,严重限制了生态学和生物多样性研究的应用。本文将以前应用于双物种情况的非参数方法扩展到多物种。在估算方面,提出了一种基于秩和的一致插入估算器,并在弱条件下推导出其渐近分布。新方法随后被应用于一项比较欧亚鹰鸮、普通鵟和红鸢生态位的研究。这些物种在中欧拥有共同的栖息地,但表现出截然不同的种群趋势。分析探讨了它们的繁殖栖息地偏好,考虑了错综复杂的竞争动态,并利用非参数方法对生态位重叠进行了估计。我们提出的方法为定量评估生态位之间的差异和重叠提供了一种有价值的推断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Method for Nonparametric Statistical Inference for Niche Overlap in Multiple Species

The understanding of species interactions and ecosystem dynamics hinges upon the study of ecological niches. Quantifying the overlap of Hutchinsonian-niches has garnered significant attention, with many recent publications addressing the issue. Prior work on estimating niche overlap often did not provide confidence intervals or assumed multivariate normality, seriously limiting applications in ecology, and biodiversity research. This paper extends a nonparametric approach, previously applied to the two-species case, to multiple species. For estimation, a consistent plug-in estimator based on rank sums is proposed and its asymptotic distribution is derived under weak conditions. The novel methodology is then applied to a study comparing the ecological niches of the Eurasian eagle owl, common buzzard, and red kite. These species share a habitat in Central Europe but exhibit distinct population trends. The analysis explores their breeding habitat preferences, considering the intricate competition dynamics and utilizing the nonparametric approach to niche overlap estimation. Our proposed method provides a valuable inferential tool for the quantitative evaluation of differences and overlap between niches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
A Preplanned Multi-Stage Platform Trial for Discovering Multiple Superior Treatments With Control of FWER and Power. Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies. Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding. Quantification of Difference in Nonselectivity Between In Vitro Diagnostic Medical Devices. Multiple Contrast Tests in the Presence of Partial Heteroskedasticity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1