基于注意力的电子健康记录表格数据缺失值估算。

Ibna Kowsar, Shourav B Rabbani, Manar D Samad
{"title":"基于注意力的电子健康记录表格数据缺失值估算。","authors":"Ibna Kowsar, Shourav B Rabbani, Manar D Samad","doi":"10.1109/ichi61247.2024.00030","DOIUrl":null,"url":null,"abstract":"<p><p>The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"177-182"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463999/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data.\",\"authors\":\"Ibna Kowsar, Shourav B Rabbani, Manar D Samad\",\"doi\":\"10.1109/ichi61247.2024.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":\"2024 \",\"pages\":\"177-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463999/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichi61247.2024.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi61247.2024.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录表格数据中缺失值的估算(IMV)对于机器学习进行特定患者预测建模至关重要。虽然生物统计学和最近的机器学习领域都开发了缺失值估算方法,但基于深度学习的解决方案在学习表格数据方面的成功率有限。本文提出了一种新颖的基于注意力的缺失值估算框架,它能利用特征间(自我注意力)或样本间注意力学习重建缺失值数据。我们采用了对比学习中使用的数据处理方法,以提高训练有素的估算模型的泛化能力。所提出的自我注意力估算方法优于最先进的统计和基于机器学习(决策树)的估算方法,在五个表格数据集上将归一化均方根误差降低了 18.4% 到 74.7%,在两个电子健康记录数据集上将归一化均方根误差降低了 52.6% 到 82.6%。当数值完全随机缺失时,所提出的基于注意力的缺失值估算方法在很大的缺失率范围(10% 到 50%)内都表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data.

The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. Evaluating Generative Models in Medical Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1