英国生物库研究中使用自动批量处理对心脏磁共振成像分割、特征跟踪、主动脉血流和原生 T1 分析进行质量控制。

European heart journal. Imaging methods and practice Pub Date : 2024-09-16 eCollection Date: 2024-07-01 DOI:10.1093/ehjimp/qyae094
Sucharitha Chadalavada, Elisa Rauseo, Ahmed Salih, Hafiz Naderi, Mohammed Khanji, Jose D Vargas, Aaron M Lee, Alborz Amir-Kalili, Lisette Lockhart, Ben Graham, Mihaela Chirvasa, Kenneth Fung, Jose Paiva, Mihir M Sanghvi, Gregory G Slabaugh, Magnus T Jensen, Nay Aung, Steffen E Petersen
{"title":"英国生物库研究中使用自动批量处理对心脏磁共振成像分割、特征跟踪、主动脉血流和原生 T1 分析进行质量控制。","authors":"Sucharitha Chadalavada, Elisa Rauseo, Ahmed Salih, Hafiz Naderi, Mohammed Khanji, Jose D Vargas, Aaron M Lee, Alborz Amir-Kalili, Lisette Lockhart, Ben Graham, Mihaela Chirvasa, Kenneth Fung, Jose Paiva, Mihir M Sanghvi, Gregory G Slabaugh, Magnus T Jensen, Nay Aung, Steffen E Petersen","doi":"10.1093/ehjimp/qyae094","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Automated algorithms are regularly used to analyse cardiac magnetic resonance (CMR) images. Validating data output reliability from this method is crucial for enabling widespread adoption. We outline a visual quality control (VQC) process for image analysis using automated batch processing. We assess the performance of automated analysis and the reliability of replacing visual checks with statistical outlier (SO) removal approach in UK Biobank CMR scans.</p><p><strong>Methods and results: </strong>We included 1987 CMR scans from the UK Biobank COVID-19 imaging study. We used batch processing software (Circle Cardiovascular Imaging Inc.-CVI42) to automatically extract chamber volumetric data, strain, native T1, and aortic flow data. The automated analysis outputs (∼62 000 videos and 2000 images) were visually checked by six experienced clinicians using a standardized approach and a custom-built R Shiny app. Inter-observer variability was assessed. Data from scans passing VQC were compared with a SO removal QC method in a subset of healthy individuals (<i>n</i> = 1069). Automated segmentation was highly rated, with over 95% of scans passing VQC. Overall inter-observer agreement was very good (Gwet's AC2 0.91; 95% confidence interval 0.84, 0.94). No difference in overall data derived from VQC or SO removal in healthy individuals was observed.</p><p><strong>Conclusion: </strong>Automated image analysis using CVI42 prototypes for UK Biobank CMR scans demonstrated high quality. Larger UK Biobank data sets analysed using these automated algorithms do not require in-depth VQC. SO removal is sufficient as a QC measure, with operator discretion for visual checks based on population or research objectives.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"2 3","pages":"qyae094"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462446/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quality control of cardiac magnetic resonance imaging segmentation, feature tracking, aortic flow, and native T1 analysis using automated batch processing in the UK Biobank study.\",\"authors\":\"Sucharitha Chadalavada, Elisa Rauseo, Ahmed Salih, Hafiz Naderi, Mohammed Khanji, Jose D Vargas, Aaron M Lee, Alborz Amir-Kalili, Lisette Lockhart, Ben Graham, Mihaela Chirvasa, Kenneth Fung, Jose Paiva, Mihir M Sanghvi, Gregory G Slabaugh, Magnus T Jensen, Nay Aung, Steffen E Petersen\",\"doi\":\"10.1093/ehjimp/qyae094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Automated algorithms are regularly used to analyse cardiac magnetic resonance (CMR) images. Validating data output reliability from this method is crucial for enabling widespread adoption. We outline a visual quality control (VQC) process for image analysis using automated batch processing. We assess the performance of automated analysis and the reliability of replacing visual checks with statistical outlier (SO) removal approach in UK Biobank CMR scans.</p><p><strong>Methods and results: </strong>We included 1987 CMR scans from the UK Biobank COVID-19 imaging study. We used batch processing software (Circle Cardiovascular Imaging Inc.-CVI42) to automatically extract chamber volumetric data, strain, native T1, and aortic flow data. The automated analysis outputs (∼62 000 videos and 2000 images) were visually checked by six experienced clinicians using a standardized approach and a custom-built R Shiny app. Inter-observer variability was assessed. Data from scans passing VQC were compared with a SO removal QC method in a subset of healthy individuals (<i>n</i> = 1069). Automated segmentation was highly rated, with over 95% of scans passing VQC. Overall inter-observer agreement was very good (Gwet's AC2 0.91; 95% confidence interval 0.84, 0.94). No difference in overall data derived from VQC or SO removal in healthy individuals was observed.</p><p><strong>Conclusion: </strong>Automated image analysis using CVI42 prototypes for UK Biobank CMR scans demonstrated high quality. Larger UK Biobank data sets analysed using these automated algorithms do not require in-depth VQC. SO removal is sufficient as a QC measure, with operator discretion for visual checks based on population or research objectives.</p>\",\"PeriodicalId\":94317,\"journal\":{\"name\":\"European heart journal. Imaging methods and practice\",\"volume\":\"2 3\",\"pages\":\"qyae094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Imaging methods and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjimp/qyae094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:自动算法经常用于分析心脏磁共振(CMR)图像。验证这种方法的数据输出可靠性对于实现广泛应用至关重要。我们概述了使用自动批处理进行图像分析的视觉质量控制 (VQC) 流程。我们评估了英国生物库 CMR 扫描中自动分析的性能以及用统计离群值(SO)去除方法取代视觉检查的可靠性:我们纳入了英国生物库 COVID-19 成像研究中的 1987 份 CMR 扫描。我们使用批处理软件(Circle Cardiovascular Imaging Inc.-CVI42)自动提取心腔容积数据、应变、原生 T1 和主动脉血流数据。六名经验丰富的临床医师使用标准化方法和定制的 R Shiny 应用程序对自动分析输出结果(62 000 个视频和 2000 张图像)进行了目测检查。对观察者之间的差异性进行了评估。在一组健康人(n = 1069)中,将通过 VQC 的扫描数据与 SO 移除 QC 方法进行了比较。自动分割得到了高度评价,超过 95% 的扫描通过了 VQC。观察者之间的整体一致性非常好(Gwet's AC2 0.91;95% 置信区间 0.84,0.94)。通过 VQC 或去除 SO 得出的健康人总体数据没有差异:结论:使用 CVI42 原型对英国生物库 CMR 扫描进行的自动图像分析显示出很高的质量。使用这些自动算法分析的较大型英国生物库数据集不需要深入的 VQC。作为质量控制措施,去除 SO 即可,操作员可根据人群或研究目标酌情进行视觉检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality control of cardiac magnetic resonance imaging segmentation, feature tracking, aortic flow, and native T1 analysis using automated batch processing in the UK Biobank study.

Aims: Automated algorithms are regularly used to analyse cardiac magnetic resonance (CMR) images. Validating data output reliability from this method is crucial for enabling widespread adoption. We outline a visual quality control (VQC) process for image analysis using automated batch processing. We assess the performance of automated analysis and the reliability of replacing visual checks with statistical outlier (SO) removal approach in UK Biobank CMR scans.

Methods and results: We included 1987 CMR scans from the UK Biobank COVID-19 imaging study. We used batch processing software (Circle Cardiovascular Imaging Inc.-CVI42) to automatically extract chamber volumetric data, strain, native T1, and aortic flow data. The automated analysis outputs (∼62 000 videos and 2000 images) were visually checked by six experienced clinicians using a standardized approach and a custom-built R Shiny app. Inter-observer variability was assessed. Data from scans passing VQC were compared with a SO removal QC method in a subset of healthy individuals (n = 1069). Automated segmentation was highly rated, with over 95% of scans passing VQC. Overall inter-observer agreement was very good (Gwet's AC2 0.91; 95% confidence interval 0.84, 0.94). No difference in overall data derived from VQC or SO removal in healthy individuals was observed.

Conclusion: Automated image analysis using CVI42 prototypes for UK Biobank CMR scans demonstrated high quality. Larger UK Biobank data sets analysed using these automated algorithms do not require in-depth VQC. SO removal is sufficient as a QC measure, with operator discretion for visual checks based on population or research objectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Severe concentric hypertrophy after cardiac arrest makes support with ECPELLA® impossible. How to address the coronaries in TAVI candidates: can the need for revascularization be safely determined by CT angiography only? Feasibility validation of automatic diagnosis of mitral valve prolapse from multi-view echocardiographic sequences based on deep neural network. A tri-leaflet mitral valve with left ventricular non-compaction cardiomyopathy. CT-FFR by expanding coronary tree with Newton-Krylov-Schwarz method to solve the governing equations of CFD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1