拟南芥中富半胱氨酸分泌蛋白、抗原 5 和致病相关 1 蛋白(CAP)超家族的系统表达分析。

IF 2.3 3区 生物学 Q2 PLANT SCIENCES Plant Direct Pub Date : 2024-10-09 eCollection Date: 2024-10-01 DOI:10.1002/pld3.70003
Megumi Matsuzawa, Takumi Nakayama, Masa H Sato, Tomoko Hirano
{"title":"拟南芥中富半胱氨酸分泌蛋白、抗原 5 和致病相关 1 蛋白(CAP)超家族的系统表达分析。","authors":"Megumi Matsuzawa, Takumi Nakayama, Masa H Sato, Tomoko Hirano","doi":"10.1002/pld3.70003","DOIUrl":null,"url":null,"abstract":"<p><p>The Cysteine-rich secretory proteins (CRISPS), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) protein (CAP) superfamily members are found in multiple eukaryotic organisms, including yeasts, animals, and plants. Although one of the plant CAP family genes, <i>PR-1</i> is known to respond to pathogen infection in plants, the functions of other CAP family genes in <i>Arabidopsis</i> remain largely unknown. In this study, we conducted a comprehensive analysis of the similarities, loci, and expression patterns of 22 Arabidopsis CAP genes/proteins, providing a clue to elucidate their molecular functions. According to the promoter-β-glucuronidase (GUS) analysis, members of the <i>Arabidopsis</i> CAP family were expressed in various young tissues or organs, such as root and shoot meristems, reproductive tissues, and particularly at the lateral root initiation site before the formation of the lateral root primordium, with distinct expression specificity. In particular, <i>CAP51</i>, <i>CAP52</i>, and <i>CAP53</i> were specifically expressed in the cortical cells at the lateral root developing regions, suggesting that these genes may function in lateral root development. Thus, the expression patterns of Arabidopsis CAP family genes suggest that CAP family proteins may have certain function in the expressed organs or tissues in <i>Arabidopsis</i> plant.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 10","pages":"e70003"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic expression analysis of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein (CAP) superfamily in <i>Arabidopsis</i>.\",\"authors\":\"Megumi Matsuzawa, Takumi Nakayama, Masa H Sato, Tomoko Hirano\",\"doi\":\"10.1002/pld3.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Cysteine-rich secretory proteins (CRISPS), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) protein (CAP) superfamily members are found in multiple eukaryotic organisms, including yeasts, animals, and plants. Although one of the plant CAP family genes, <i>PR-1</i> is known to respond to pathogen infection in plants, the functions of other CAP family genes in <i>Arabidopsis</i> remain largely unknown. In this study, we conducted a comprehensive analysis of the similarities, loci, and expression patterns of 22 Arabidopsis CAP genes/proteins, providing a clue to elucidate their molecular functions. According to the promoter-β-glucuronidase (GUS) analysis, members of the <i>Arabidopsis</i> CAP family were expressed in various young tissues or organs, such as root and shoot meristems, reproductive tissues, and particularly at the lateral root initiation site before the formation of the lateral root primordium, with distinct expression specificity. In particular, <i>CAP51</i>, <i>CAP52</i>, and <i>CAP53</i> were specifically expressed in the cortical cells at the lateral root developing regions, suggesting that these genes may function in lateral root development. Thus, the expression patterns of Arabidopsis CAP family genes suggest that CAP family proteins may have certain function in the expressed organs or tissues in <i>Arabidopsis</i> plant.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 10\",\"pages\":\"e70003\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

富半胱氨酸分泌蛋白(CRISPS)、抗原 5(Ag5)和致病相关 1(PR-1)蛋白(CAP)超家族成员存在于多种真核生物中,包括酵母、动物和植物。虽然已知植物 CAP 家族基因之一的 PR-1 能对植物中的病原体感染做出反应,但拟南芥中其他 CAP 家族基因的功能在很大程度上仍然未知。本研究对拟南芥 22 个 CAP 基因/蛋白的相似性、位点和表达模式进行了全面分析,为阐明其分子功能提供了线索。根据启动子-β-葡糖醛酸酶(GUS)分析,拟南芥CAP家族成员在不同的幼嫩组织或器官中均有表达,如根和芽的分生组织、生殖组织,特别是在侧根原基形成前的侧根萌发部位,具有明显的表达特异性。其中,CAP51、CAP52 和 CAP53 在侧根发育区域的皮层细胞中特异表达,表明这些基因可能在侧根发育过程中发挥作用。因此,拟南芥 CAP 家族基因的表达模式表明,CAP 家族蛋白可能在拟南芥植物的表达器官或组织中具有一定的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic expression analysis of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein (CAP) superfamily in Arabidopsis.

The Cysteine-rich secretory proteins (CRISPS), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) protein (CAP) superfamily members are found in multiple eukaryotic organisms, including yeasts, animals, and plants. Although one of the plant CAP family genes, PR-1 is known to respond to pathogen infection in plants, the functions of other CAP family genes in Arabidopsis remain largely unknown. In this study, we conducted a comprehensive analysis of the similarities, loci, and expression patterns of 22 Arabidopsis CAP genes/proteins, providing a clue to elucidate their molecular functions. According to the promoter-β-glucuronidase (GUS) analysis, members of the Arabidopsis CAP family were expressed in various young tissues or organs, such as root and shoot meristems, reproductive tissues, and particularly at the lateral root initiation site before the formation of the lateral root primordium, with distinct expression specificity. In particular, CAP51, CAP52, and CAP53 were specifically expressed in the cortical cells at the lateral root developing regions, suggesting that these genes may function in lateral root development. Thus, the expression patterns of Arabidopsis CAP family genes suggest that CAP family proteins may have certain function in the expressed organs or tissues in Arabidopsis plant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
期刊最新文献
Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis. A Promoter Collection for Cell-Targeted Analysis Within the Stomatal Complex. LeafDNet: Transforming Leaf Disease Diagnosis Through Deep Transfer Learning. Delivery of Marker-Free DNA to Plant Genome by the Transgenic Selection-Associated Fragment Elimination (T-SAFE) System. Chromosome Numbers and Reproductive Life Cycles in Green Plants: A Phylotranscriptomic Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1