Han Wang, Juanjuan Huang, Congcong Zhang, Yanmei Li, Huimin Gou, Guoping Liang, Zonghuan Ma, Juan Mao, Baihong Chen
{"title":"葡萄糖通过促进苯丙酮生物合成增强葡萄茎中木质素的积累","authors":"Han Wang, Juanjuan Huang, Congcong Zhang, Yanmei Li, Huimin Gou, Guoping Liang, Zonghuan Ma, Juan Mao, Baihong Chen","doi":"10.1186/s40538-024-00676-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The lignification of branches can promote the accumulation of nutrients, increase plant survival and resistance to biotic and abiotic stresses. As an important carbon source for plants, glucose is also the carbon skeleton for lignin synthesis. Grapevine is a perennial cash crop, and highly lignified branches are essential to ensure the growth of the grapevine plant and the development of the fruit.</p><h3>Methods</h3><p>Here, ‘Red Globe’ grape (<i>Vitis vinifera</i> L.) plantlets were selected as the material and cultured with different concentrations of glucose: 0 g/L, 20 g/L, 40 g/L and 60 g/L glucose (G0, G20, G40 and G60). Among them, G0 group as control. Lignin, anthocyanins and glucose contents, plant height and microstructure were measured at each glucose concentration after 40-, 50-, and 60-day treatments. Transcriptome and metabolome were used to analyze the difference in genes and metabolites after 50 days of growth.</p><h3>Results</h3><p>After 50 days of cultivation, the lignin content in G40 group was the highest. And the xylem cells number also increased. To further, transcriptome and metabolome have identified a total of 3638 differentially expressed genes (DEGs) (including 245 TFs) and 510 differently accumulated metabolites (DAMs) in three comparison groups. In-depth joint analysis revealed that phenylpropanoid biosynthesis pathway significantly respond to exogenous glucose, and 37 DEGs were identified. Therefore, the phenylpropane biosynthesis pathway may be the key to exogenous glucose to increase lignin levels in grapes, with differential expression of genes being a top priority. These findings provide a new perspective for understanding the relationship between glucose and lignin in grape.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00676-9","citationCount":"0","resultStr":"{\"title\":\"Glucose enhanced lignin accumulation in grapevine stems via promoting phenylpropanoid biosynthesis\",\"authors\":\"Han Wang, Juanjuan Huang, Congcong Zhang, Yanmei Li, Huimin Gou, Guoping Liang, Zonghuan Ma, Juan Mao, Baihong Chen\",\"doi\":\"10.1186/s40538-024-00676-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The lignification of branches can promote the accumulation of nutrients, increase plant survival and resistance to biotic and abiotic stresses. As an important carbon source for plants, glucose is also the carbon skeleton for lignin synthesis. Grapevine is a perennial cash crop, and highly lignified branches are essential to ensure the growth of the grapevine plant and the development of the fruit.</p><h3>Methods</h3><p>Here, ‘Red Globe’ grape (<i>Vitis vinifera</i> L.) plantlets were selected as the material and cultured with different concentrations of glucose: 0 g/L, 20 g/L, 40 g/L and 60 g/L glucose (G0, G20, G40 and G60). Among them, G0 group as control. Lignin, anthocyanins and glucose contents, plant height and microstructure were measured at each glucose concentration after 40-, 50-, and 60-day treatments. Transcriptome and metabolome were used to analyze the difference in genes and metabolites after 50 days of growth.</p><h3>Results</h3><p>After 50 days of cultivation, the lignin content in G40 group was the highest. And the xylem cells number also increased. To further, transcriptome and metabolome have identified a total of 3638 differentially expressed genes (DEGs) (including 245 TFs) and 510 differently accumulated metabolites (DAMs) in three comparison groups. In-depth joint analysis revealed that phenylpropanoid biosynthesis pathway significantly respond to exogenous glucose, and 37 DEGs were identified. Therefore, the phenylpropane biosynthesis pathway may be the key to exogenous glucose to increase lignin levels in grapes, with differential expression of genes being a top priority. These findings provide a new perspective for understanding the relationship between glucose and lignin in grape.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00676-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00676-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00676-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Glucose enhanced lignin accumulation in grapevine stems via promoting phenylpropanoid biosynthesis
Background
The lignification of branches can promote the accumulation of nutrients, increase plant survival and resistance to biotic and abiotic stresses. As an important carbon source for plants, glucose is also the carbon skeleton for lignin synthesis. Grapevine is a perennial cash crop, and highly lignified branches are essential to ensure the growth of the grapevine plant and the development of the fruit.
Methods
Here, ‘Red Globe’ grape (Vitis vinifera L.) plantlets were selected as the material and cultured with different concentrations of glucose: 0 g/L, 20 g/L, 40 g/L and 60 g/L glucose (G0, G20, G40 and G60). Among them, G0 group as control. Lignin, anthocyanins and glucose contents, plant height and microstructure were measured at each glucose concentration after 40-, 50-, and 60-day treatments. Transcriptome and metabolome were used to analyze the difference in genes and metabolites after 50 days of growth.
Results
After 50 days of cultivation, the lignin content in G40 group was the highest. And the xylem cells number also increased. To further, transcriptome and metabolome have identified a total of 3638 differentially expressed genes (DEGs) (including 245 TFs) and 510 differently accumulated metabolites (DAMs) in three comparison groups. In-depth joint analysis revealed that phenylpropanoid biosynthesis pathway significantly respond to exogenous glucose, and 37 DEGs were identified. Therefore, the phenylpropane biosynthesis pathway may be the key to exogenous glucose to increase lignin levels in grapes, with differential expression of genes being a top priority. These findings provide a new perspective for understanding the relationship between glucose and lignin in grape.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.