使用先进的构造模型研究波哥大(哥伦比亚)硅藻软土的力学行为

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL International Journal for Numerical and Analytical Methods in Geomechanics Pub Date : 2024-10-09 DOI:10.1002/nag.3863
Cristhian Mendoza, Márcio Muniz de Farias
{"title":"使用先进的构造模型研究波哥大(哥伦比亚)硅藻软土的力学行为","authors":"Cristhian Mendoza, Márcio Muniz de Farias","doi":"10.1002/nag.3863","DOIUrl":null,"url":null,"abstract":"Most constitutive models did not initially consider special behaviors in some soils with singular characteristics (e.g., soft soils with diatom content). For example, at first, these models did not consider the effect of soil structure and viscosity. However, in the last decades, these variables have been incorporated into several constitutive models to describe the mechanical behavior of the soil in its natural state. Structure and viscosity laws that adequately reproduce the soil behavior had to be developed to include these variables. This paper compares the mechanical behavior of soft soils in Bogotá with different constitutive models. Bogotá’s soft soils are lacustrine deposits with a high content of diatoms in their structure. Natural soil samples with intact structures show a high‐water content, which can be higher than 300%, liquid limits of up to 400%, void ratios higher than five, and friction angles of almost 40°. In addition, the model validations were made through the simulations of triaxial tests in compression and shear paths. Modified Cam Clay (MCC), hypoplastic (HP), and subloading Cam Clay (SCC) were the constitutive models used. Two models are based on an elastoplastic framework, and the third uses a HP framework. Several lessons were learned from the simulations regarding the strengths and weaknesses of the models compared to the tests carried out. Finally, the extensive discussion revolves around determining the most suitable model for simulating the mechanical behavior of soft soils containing diatoms in Bogotá.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"24 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Advanced Constitutive Models for the Mechanical Behavior of Soft Soils With Diatoms From Bogotá (Colombia)\",\"authors\":\"Cristhian Mendoza, Márcio Muniz de Farias\",\"doi\":\"10.1002/nag.3863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most constitutive models did not initially consider special behaviors in some soils with singular characteristics (e.g., soft soils with diatom content). For example, at first, these models did not consider the effect of soil structure and viscosity. However, in the last decades, these variables have been incorporated into several constitutive models to describe the mechanical behavior of the soil in its natural state. Structure and viscosity laws that adequately reproduce the soil behavior had to be developed to include these variables. This paper compares the mechanical behavior of soft soils in Bogotá with different constitutive models. Bogotá’s soft soils are lacustrine deposits with a high content of diatoms in their structure. Natural soil samples with intact structures show a high‐water content, which can be higher than 300%, liquid limits of up to 400%, void ratios higher than five, and friction angles of almost 40°. In addition, the model validations were made through the simulations of triaxial tests in compression and shear paths. Modified Cam Clay (MCC), hypoplastic (HP), and subloading Cam Clay (SCC) were the constitutive models used. Two models are based on an elastoplastic framework, and the third uses a HP framework. Several lessons were learned from the simulations regarding the strengths and weaknesses of the models compared to the tests carried out. Finally, the extensive discussion revolves around determining the most suitable model for simulating the mechanical behavior of soft soils containing diatoms in Bogotá.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3863\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3863","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

大多数结构模型最初都没有考虑某些具有特殊性质的土壤(如硅藻含量高的软土)的特殊行为。例如,这些模型最初没有考虑土壤结构和粘度的影响。然而,在过去的几十年中,这些变量已被纳入多个构成模型,以描述自然状态下土壤的力学行为。必须开发能充分再现土壤行为的结构和粘度定律,以纳入这些变量。本文比较了波哥大软土在不同构成模型下的力学行为。波哥大的软土是湖相沉积物,其结构中含有大量硅藻。结构完整的天然土壤样本含水量很高,可高于 300%,液限高达 400%,空隙率高于 5,摩擦角接近 40°。此外,还通过模拟压缩和剪切路径下的三轴试验对模型进行了验证。所使用的构成模型包括改良凸轮粘土(MCC)、低塑性凸轮粘土(HP)和超载凸轮粘土(SCC)。其中两个模型基于弹塑性框架,第三个模型使用 HP 框架。与已进行的测试相比,从模拟中吸取了有关模型优缺点的若干经验教训。最后,围绕确定最适合模拟波哥大含硅藻软土力学行为的模型进行了广泛讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Advanced Constitutive Models for the Mechanical Behavior of Soft Soils With Diatoms From Bogotá (Colombia)
Most constitutive models did not initially consider special behaviors in some soils with singular characteristics (e.g., soft soils with diatom content). For example, at first, these models did not consider the effect of soil structure and viscosity. However, in the last decades, these variables have been incorporated into several constitutive models to describe the mechanical behavior of the soil in its natural state. Structure and viscosity laws that adequately reproduce the soil behavior had to be developed to include these variables. This paper compares the mechanical behavior of soft soils in Bogotá with different constitutive models. Bogotá’s soft soils are lacustrine deposits with a high content of diatoms in their structure. Natural soil samples with intact structures show a high‐water content, which can be higher than 300%, liquid limits of up to 400%, void ratios higher than five, and friction angles of almost 40°. In addition, the model validations were made through the simulations of triaxial tests in compression and shear paths. Modified Cam Clay (MCC), hypoplastic (HP), and subloading Cam Clay (SCC) were the constitutive models used. Two models are based on an elastoplastic framework, and the third uses a HP framework. Several lessons were learned from the simulations regarding the strengths and weaknesses of the models compared to the tests carried out. Finally, the extensive discussion revolves around determining the most suitable model for simulating the mechanical behavior of soft soils containing diatoms in Bogotá.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
期刊最新文献
A POD‐TANN Approach for the Multiscale Modeling of Materials and Macro‐Element Derivation in Geomechanics Adaptive Mesh Generation and Numerical Verification for Complex Rock Structures Based on Optimization and Iteration Algorithms Issue Information Analysis of Fracturing Above Block Caving Back: A Spherical Shell Theory Approach and BEM Numerical Simulation Data‐Driven Tools to Evaluate Support Pressure, Radial Displacements, and Face Extrusion for Tunnels Excavated in Elastoplastic Grounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1