Co/ZnO 界面的稀释磁性氧化物带来的非常规交换偏置和更高的自旋泵送效率

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-10-09 DOI:10.1063/5.0209098
Xiaoqi Liao, Chunmei Wang, Duo Zhao, Wei Tang, Huawei Liang, Yu-Jia Zeng, Chris Van Haesendonck, Qinghai Song, Haoliang Liu
{"title":"Co/ZnO 界面的稀释磁性氧化物带来的非常规交换偏置和更高的自旋泵送效率","authors":"Xiaoqi Liao, Chunmei Wang, Duo Zhao, Wei Tang, Huawei Liang, Yu-Jia Zeng, Chris Van Haesendonck, Qinghai Song, Haoliang Liu","doi":"10.1063/5.0209098","DOIUrl":null,"url":null,"abstract":"Exchange bias (EB) is normally created by the interfacial exchange coupling at a ferromagnetic/antiferromagnetic (FM/AFM) interface. FM/AFM interfaces have also been proved to perform enhanced spin angular momentum transfer efficiency in spin pumping (SP), compared with typical FM/nonmagnetic interfaces. Here, we report an unexpected EB and enhanced SP between a ferromagnet and semiconductor. Considerable EB has been observed in Co films grown on ZnO single crystal due to the interface antiferromagnetism of the Zn1−xCoxO (x depends on the Co solubility limit in ZnO) layer. Moreover, SP measurements demonstrate a giant spin pumping efficiency at the Co/ZnO interface with a bump (spin mixing conductance Geff↑↓= 28 nm−2) around the blocking temperature TB ∼ 75 K. The enhanced SP is further confirmed by inverse spin Hall effect measurements and the spin Hall angle θISHE of Zn1−xCoxO is estimated to be 0.011. The bound magnetic polarons with s–d exchange interaction between donor electrons and magnetic cation ions in Zn1−xCoxO play a key role in the formation of antiferromagnetism with giant Geff↑↓. Our work provides a new insight into spin physics at FM/semiconducting interfaces.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"32 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconventional exchange bias and enhanced spin pumping efficiency due to diluted magnetic oxide at the Co/ZnO interface\",\"authors\":\"Xiaoqi Liao, Chunmei Wang, Duo Zhao, Wei Tang, Huawei Liang, Yu-Jia Zeng, Chris Van Haesendonck, Qinghai Song, Haoliang Liu\",\"doi\":\"10.1063/5.0209098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exchange bias (EB) is normally created by the interfacial exchange coupling at a ferromagnetic/antiferromagnetic (FM/AFM) interface. FM/AFM interfaces have also been proved to perform enhanced spin angular momentum transfer efficiency in spin pumping (SP), compared with typical FM/nonmagnetic interfaces. Here, we report an unexpected EB and enhanced SP between a ferromagnet and semiconductor. Considerable EB has been observed in Co films grown on ZnO single crystal due to the interface antiferromagnetism of the Zn1−xCoxO (x depends on the Co solubility limit in ZnO) layer. Moreover, SP measurements demonstrate a giant spin pumping efficiency at the Co/ZnO interface with a bump (spin mixing conductance Geff↑↓= 28 nm−2) around the blocking temperature TB ∼ 75 K. The enhanced SP is further confirmed by inverse spin Hall effect measurements and the spin Hall angle θISHE of Zn1−xCoxO is estimated to be 0.011. The bound magnetic polarons with s–d exchange interaction between donor electrons and magnetic cation ions in Zn1−xCoxO play a key role in the formation of antiferromagnetism with giant Geff↑↓. Our work provides a new insight into spin physics at FM/semiconducting interfaces.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0209098\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0209098","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

交换偏压(EB)通常是由铁磁/反铁磁(FM/AFM)界面上的界面交换耦合产生的。事实证明,与典型的铁磁/非磁性界面相比,铁磁/非铁磁界面在自旋泵(SP)中具有更高的自旋角动量传递效率。在这里,我们报告了铁磁体和半导体之间意想不到的 EB 和增强 SP。由于 Zn1-xCoxO(x 取决于钴在 ZnO 中的溶解极限)层的界面反铁磁性,在 ZnO 单晶上生长的钴薄膜中观察到了相当大的 EB。此外,自旋泵的测量结果表明,Co/氧化锌界面的自旋泵效率很高,在阻滞温度 TB ∼ 75 K 附近有一个凸起(自旋混合电导 Geff↑↓= 28 nm-2)。反自旋霍尔效应测量进一步证实了自旋泵的增强,Zn1-xCoxO 的自旋霍尔角 θISHE 估计为 0.011。在 Zn1-xCoxO 中,供体电子和磁性阳离子之间通过 s-d 交换作用结合的磁极子在形成具有巨 Geff↑↓ 的反铁磁性中起了关键作用。我们的研究为调频/半导体界面的自旋物理学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unconventional exchange bias and enhanced spin pumping efficiency due to diluted magnetic oxide at the Co/ZnO interface
Exchange bias (EB) is normally created by the interfacial exchange coupling at a ferromagnetic/antiferromagnetic (FM/AFM) interface. FM/AFM interfaces have also been proved to perform enhanced spin angular momentum transfer efficiency in spin pumping (SP), compared with typical FM/nonmagnetic interfaces. Here, we report an unexpected EB and enhanced SP between a ferromagnet and semiconductor. Considerable EB has been observed in Co films grown on ZnO single crystal due to the interface antiferromagnetism of the Zn1−xCoxO (x depends on the Co solubility limit in ZnO) layer. Moreover, SP measurements demonstrate a giant spin pumping efficiency at the Co/ZnO interface with a bump (spin mixing conductance Geff↑↓= 28 nm−2) around the blocking temperature TB ∼ 75 K. The enhanced SP is further confirmed by inverse spin Hall effect measurements and the spin Hall angle θISHE of Zn1−xCoxO is estimated to be 0.011. The bound magnetic polarons with s–d exchange interaction between donor electrons and magnetic cation ions in Zn1−xCoxO play a key role in the formation of antiferromagnetism with giant Geff↑↓. Our work provides a new insight into spin physics at FM/semiconducting interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
Physical and electrical properties of silica Scaling up of photocatalytic systems for large-scale hydrogen generation Integrated functions of microfluidics and gravimetric sensing enabled by piezoelectric driven microstructures Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors InGaN-based blue and red micro-LEDs: Impact of carrier localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1