Hengcong Huang, Niko Prasetyo, Takashi Kajiwara, Yifan Gu, Tao Jia, Ken-Ichi Otake, Susumu Kitagawa, Fengting Li
{"title":"在多孔配位聚合物中设计三氟甲基,以增强稳定性并调节孔隙窗口,从而实现己烷异构体分离。","authors":"Hengcong Huang, Niko Prasetyo, Takashi Kajiwara, Yifan Gu, Tao Jia, Ken-Ichi Otake, Susumu Kitagawa, Fengting Li","doi":"10.1002/asia.202400899","DOIUrl":null,"url":null,"abstract":"<p><p>Effective separation of hexane (C6) isomers is critical for a variety of industrial applications but conventional distillation methods are energy-intensive. Adsorptive separations based on porous coordination polymers (PCPs) offer a promising alternative due to their exceptional porosity and tunable properties. However, there is still an urgent need to develop PCPs with high stability and separation performance. This study investigates how substituting a methyl (-CH<sub>3</sub>) group with a trifluoromethyl (-CF<sub>3</sub>) group can regulate pores and hydrophobicity in PCPs. This precise adjustment aims to enhance stability and improve the kinetic separation performance of hydrophobic C6 isomers by considering the size and hydrophobicity of the trifluoromethyl group. Two isostructural PCPs with pcu topology, PCP-CH3 and PCP-CF3, were synthesized to vary pore diameters and hydrophobicity based on the presence of -CH<sub>3</sub> or -CF<sub>3</sub> groups. PCP-CF3 showed greater stability in water compared to PCP-CH3. While PCP-CH3 had high adsorption capacities, it lacked selectivity, whereas PCP-CF3 demonstrated improved selectivity, particularly in excluding dibranched isomers. Dynamic column separation experiments revealed that PCP-CF3 could selectively adsorb linear and monobranched isomers over dibranched isomers at room temperature. These findings highlight the potential of fluorine-modified PCPs for efficient isomer separation and underscore the importance of stability improvement strategies.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400899"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Trifluoromethyl Groups in Porous Coordination Polymers to Enhance Stability and Regulate Pore Window for Hexane Isomers Separation.\",\"authors\":\"Hengcong Huang, Niko Prasetyo, Takashi Kajiwara, Yifan Gu, Tao Jia, Ken-Ichi Otake, Susumu Kitagawa, Fengting Li\",\"doi\":\"10.1002/asia.202400899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective separation of hexane (C6) isomers is critical for a variety of industrial applications but conventional distillation methods are energy-intensive. Adsorptive separations based on porous coordination polymers (PCPs) offer a promising alternative due to their exceptional porosity and tunable properties. However, there is still an urgent need to develop PCPs with high stability and separation performance. This study investigates how substituting a methyl (-CH<sub>3</sub>) group with a trifluoromethyl (-CF<sub>3</sub>) group can regulate pores and hydrophobicity in PCPs. This precise adjustment aims to enhance stability and improve the kinetic separation performance of hydrophobic C6 isomers by considering the size and hydrophobicity of the trifluoromethyl group. Two isostructural PCPs with pcu topology, PCP-CH3 and PCP-CF3, were synthesized to vary pore diameters and hydrophobicity based on the presence of -CH<sub>3</sub> or -CF<sub>3</sub> groups. PCP-CF3 showed greater stability in water compared to PCP-CH3. While PCP-CH3 had high adsorption capacities, it lacked selectivity, whereas PCP-CF3 demonstrated improved selectivity, particularly in excluding dibranched isomers. Dynamic column separation experiments revealed that PCP-CF3 could selectively adsorb linear and monobranched isomers over dibranched isomers at room temperature. These findings highlight the potential of fluorine-modified PCPs for efficient isomer separation and underscore the importance of stability improvement strategies.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202400899\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202400899\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400899","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Trifluoromethyl Groups in Porous Coordination Polymers to Enhance Stability and Regulate Pore Window for Hexane Isomers Separation.
Effective separation of hexane (C6) isomers is critical for a variety of industrial applications but conventional distillation methods are energy-intensive. Adsorptive separations based on porous coordination polymers (PCPs) offer a promising alternative due to their exceptional porosity and tunable properties. However, there is still an urgent need to develop PCPs with high stability and separation performance. This study investigates how substituting a methyl (-CH3) group with a trifluoromethyl (-CF3) group can regulate pores and hydrophobicity in PCPs. This precise adjustment aims to enhance stability and improve the kinetic separation performance of hydrophobic C6 isomers by considering the size and hydrophobicity of the trifluoromethyl group. Two isostructural PCPs with pcu topology, PCP-CH3 and PCP-CF3, were synthesized to vary pore diameters and hydrophobicity based on the presence of -CH3 or -CF3 groups. PCP-CF3 showed greater stability in water compared to PCP-CH3. While PCP-CH3 had high adsorption capacities, it lacked selectivity, whereas PCP-CF3 demonstrated improved selectivity, particularly in excluding dibranched isomers. Dynamic column separation experiments revealed that PCP-CF3 could selectively adsorb linear and monobranched isomers over dibranched isomers at room temperature. These findings highlight the potential of fluorine-modified PCPs for efficient isomer separation and underscore the importance of stability improvement strategies.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).