利用 RGB 摄像机和线激光器,将光学三角测量技术应用于临床,以评估呼吸频率。

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-10-10 DOI:10.1186/s12880-024-01448-5
Yoosoo Jeong, Chanho Song, Seungmin Lee, Jaebum Son
{"title":"利用 RGB 摄像机和线激光器,将光学三角测量技术应用于临床,以评估呼吸频率。","authors":"Yoosoo Jeong, Chanho Song, Seungmin Lee, Jaebum Son","doi":"10.1186/s12880-024-01448-5","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a non-contact and unrestrained respiration monitoring system based on the optical triangulation technique. The proposed system consists of a red-green-blue (RGB) camera and a line laser installed to face the frontal thorax of a human body. The underlying idea of the work is that the camera and line laser are mounted in opposite directions, unlike other research. By applying the proposed image processing algorithm to the camera image, laser coordinates are extracted and converted to world coordinates using the optical triangulation method. These converted world coordinates represent the height of the thorax of a person. The respiratory rate is measured by analyzing changes of the thorax surface depth. To verify system performance, the camera and the line laser are installed on the head and foot sides of a bed, respectively, facing toward the center of the bed. Twenty healthy volunteers were enrolled and underwent measurement for 100s. Evaluation results show that the optical triangulation-based image processing method demonstrates non-inferior performance to a commercial patient monitoring system with a root-mean-squared error of 0.30rpm and a maximum error of 1rpm ( <math><mrow><mi>p</mi> <mo>></mo> <mn>0.05</mn></mrow> </math> ), which implies the proposed non-contact system can be a useful alternative to the conventional healthcare method.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"274"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468289/pdf/","citationCount":"0","resultStr":"{\"title\":\"For a clinical application of optical triangulation to assess respiratory rate using an RGB camera and a line laser.\",\"authors\":\"Yoosoo Jeong, Chanho Song, Seungmin Lee, Jaebum Son\",\"doi\":\"10.1186/s12880-024-01448-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a non-contact and unrestrained respiration monitoring system based on the optical triangulation technique. The proposed system consists of a red-green-blue (RGB) camera and a line laser installed to face the frontal thorax of a human body. The underlying idea of the work is that the camera and line laser are mounted in opposite directions, unlike other research. By applying the proposed image processing algorithm to the camera image, laser coordinates are extracted and converted to world coordinates using the optical triangulation method. These converted world coordinates represent the height of the thorax of a person. The respiratory rate is measured by analyzing changes of the thorax surface depth. To verify system performance, the camera and the line laser are installed on the head and foot sides of a bed, respectively, facing toward the center of the bed. Twenty healthy volunteers were enrolled and underwent measurement for 100s. Evaluation results show that the optical triangulation-based image processing method demonstrates non-inferior performance to a commercial patient monitoring system with a root-mean-squared error of 0.30rpm and a maximum error of 1rpm ( <math><mrow><mi>p</mi> <mo>></mo> <mn>0.05</mn></mrow> </math> ), which implies the proposed non-contact system can be a useful alternative to the conventional healthcare method.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"24 1\",\"pages\":\"274\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01448-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01448-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于光学三角测量技术的非接触式无约束呼吸监测系统。该系统由一个红-绿-蓝(RGB)摄像头和一个线激光器组成,安装在人体前胸的正前方。与其他研究不同的是,这项工作的基本思想是将相机和线激光器安装在相反的方向上。通过对照相机图像应用拟议的图像处理算法,提取激光坐标,并使用光学三角测量法将其转换为世界坐标。这些转换后的世界坐标代表了人的胸廓高度。通过分析胸廓表面深度的变化来测量呼吸频率。为验证系统性能,摄像头和线激光器分别安装在床的头侧和脚侧,朝向床的中心。20 名健康志愿者被选中并接受了 100 秒的测量。评估结果表明,基于光学三角测量的图像处理方法的性能不逊于商业病人监测系统,均方根误差为 0.30rpm,最大误差为 1rpm ( p > 0.05),这意味着所提出的非接触式系统可以替代传统的医疗保健方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
For a clinical application of optical triangulation to assess respiratory rate using an RGB camera and a line laser.

This paper presents a non-contact and unrestrained respiration monitoring system based on the optical triangulation technique. The proposed system consists of a red-green-blue (RGB) camera and a line laser installed to face the frontal thorax of a human body. The underlying idea of the work is that the camera and line laser are mounted in opposite directions, unlike other research. By applying the proposed image processing algorithm to the camera image, laser coordinates are extracted and converted to world coordinates using the optical triangulation method. These converted world coordinates represent the height of the thorax of a person. The respiratory rate is measured by analyzing changes of the thorax surface depth. To verify system performance, the camera and the line laser are installed on the head and foot sides of a bed, respectively, facing toward the center of the bed. Twenty healthy volunteers were enrolled and underwent measurement for 100s. Evaluation results show that the optical triangulation-based image processing method demonstrates non-inferior performance to a commercial patient monitoring system with a root-mean-squared error of 0.30rpm and a maximum error of 1rpm ( p > 0.05 ), which implies the proposed non-contact system can be a useful alternative to the conventional healthcare method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
In vitro detection of cancer cells using a novel fluorescent choline derivative. Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients. Prior information guided deep-learning model for tumor bed segmentation in breast cancer radiotherapy. The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators. The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1