用于合成对映体富集的 PPAP 的催化炔基共轭物加成。

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-10-11 Epub Date: 2024-10-10 DOI:10.1126/science.adr8612
Shawn Ng, Casey Howshall, Thanh Nhat Ho, Binh Khanh Mai, Yuebiao Zhou, Can Qin, Kai Ze Tee, Peng Liu, Filippo Romiti, Amir H Hoveyda
{"title":"用于合成对映体富集的 PPAP 的催化炔基共轭物加成。","authors":"Shawn Ng, Casey Howshall, Thanh Nhat Ho, Binh Khanh Mai, Yuebiao Zhou, Can Qin, Kai Ze Tee, Peng Liu, Filippo Romiti, Amir H Hoveyda","doi":"10.1126/science.adr8612","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of >400 natural products with a broad spectrum of bioactivity, ranging from antidepressant and antimicrobial to anti-obesity and anticancer activity. Here, we present a scalable, regio-, site-, and enantioselective catalytic method for synthesis of cyclic β-prenyl ketones, compounds that can be used for efficient syntheses of many PPAPs in high enantiomeric purity. The transformation is prenyl conjugate addition to cyclic β-ketoesters promoted by a readily accessible chiral copper catalyst and involving an easy-to-prepare and isolable organoborate reagent. Reactions reach completion in just a few minutes at room temperature. The importance of this advance is highlighted by the enantioselective preparation of intermediates previously used to generate racemic PPAPs. We also present the enantioselective synthesis of nemorosonol (14 steps, 20% yield) and its one-step conversion to another PPAP, garcibracteatone (52% yield).</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs.\",\"authors\":\"Shawn Ng, Casey Howshall, Thanh Nhat Ho, Binh Khanh Mai, Yuebiao Zhou, Can Qin, Kai Ze Tee, Peng Liu, Filippo Romiti, Amir H Hoveyda\",\"doi\":\"10.1126/science.adr8612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of >400 natural products with a broad spectrum of bioactivity, ranging from antidepressant and antimicrobial to anti-obesity and anticancer activity. Here, we present a scalable, regio-, site-, and enantioselective catalytic method for synthesis of cyclic β-prenyl ketones, compounds that can be used for efficient syntheses of many PPAPs in high enantiomeric purity. The transformation is prenyl conjugate addition to cyclic β-ketoesters promoted by a readily accessible chiral copper catalyst and involving an easy-to-prepare and isolable organoborate reagent. Reactions reach completion in just a few minutes at room temperature. The importance of this advance is highlighted by the enantioselective preparation of intermediates previously used to generate racemic PPAPs. We also present the enantioselective synthesis of nemorosonol (14 steps, 20% yield) and its one-step conversion to another PPAP, garcibracteatone (52% yield).</p>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/science.adr8612\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adr8612","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多环聚肾烯丙基酰基氯葡萄糖醇(PPAPs)是一类大于 400 种的天然产物,具有广泛的生物活性,包括抗抑郁、抗菌、抗肥胖和抗癌活性。在这里,我们介绍了一种可扩展的、区域、位点和对映选择性催化方法,用于合成环状 β-丙烯基酮,这种化合物可用于高效合成许多对映纯度很高的 PPAPs。在一种易于获得的手性铜催化剂的催化下,环 β-酮的预烯丙基共轭加成反应发生了转变,其中涉及一种易于制备和分离的有机硼酸盐试剂。反应在室温下几分钟内即可完成。通过对映选择性制备以前用于生成外消旋 PPAP 的中间体,凸显了这一进展的重要性。我们还介绍了对映体选择性合成内吗洛索诺(14 步,收率 20%)及其一步转化为另一种 PPAP--加西白术酮(收率 52%)的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs.

Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of >400 natural products with a broad spectrum of bioactivity, ranging from antidepressant and antimicrobial to anti-obesity and anticancer activity. Here, we present a scalable, regio-, site-, and enantioselective catalytic method for synthesis of cyclic β-prenyl ketones, compounds that can be used for efficient syntheses of many PPAPs in high enantiomeric purity. The transformation is prenyl conjugate addition to cyclic β-ketoesters promoted by a readily accessible chiral copper catalyst and involving an easy-to-prepare and isolable organoborate reagent. Reactions reach completion in just a few minutes at room temperature. The importance of this advance is highlighted by the enantioselective preparation of intermediates previously used to generate racemic PPAPs. We also present the enantioselective synthesis of nemorosonol (14 steps, 20% yield) and its one-step conversion to another PPAP, garcibracteatone (52% yield).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Catalytic asymmetric fragmentation of cyclopropanes. Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs. Coming of age. Considerations for governing open foundation models. Dangers of aging water infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1