Ruolan Wu, Yuan Wu, Pingyun Wu, Huilong Li, Pengfei She
{"title":"再利用药物 visomitin 对金黄色葡萄球菌的杀菌和抗菌群感应活性。","authors":"Ruolan Wu, Yuan Wu, Pingyun Wu, Huilong Li, Pengfei She","doi":"10.1080/21505594.2024.2415952","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing antibiotic resistance in <i>Staphylococcus aureus</i>, it is imperative to develop innovative therapeutic strategies against new targets to reduce selective survival pressures and incidence of resistance. In <i>S. aureus</i>, interbacterial communication relies on a quorum sensing system that regulates gene expression and physiological activities. Here, we identified that Visomitin, an antioxidant small molecule, exhibited bactericidal efficacy against methicillin-resistant <i>S. aureus</i> and its high tolerance phenotypes like intracellular bacteria and persister cells without inducing resistance. Critically, sub-minimal inhibitory concentrations (sub-MICs) of Visomitin could serve as a potent quorum-quencher reducing virulence production (such as haemolysin and staphyloxanthin), along with inhibiting biofilm formation, self-aggregation, and colony spreading of <i>S. aureus</i>. These effects were probably mediated by interfering with the <i>S. aureus</i> accessory gene regulator quorum sensing system. In summary, our findings suggest that Visomitin shows dual antimicrobial effects, including bactericidal effects at the concentrations above MIC and quorum sensing inhibition effects at sub-MICs, which holds promise for treating MRSA-related refractory infections.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bactericidal and anti-quorum sensing activity of repurposing drug Visomitin against <i>Staphylococcus aureus</i>.\",\"authors\":\"Ruolan Wu, Yuan Wu, Pingyun Wu, Huilong Li, Pengfei She\",\"doi\":\"10.1080/21505594.2024.2415952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the growing antibiotic resistance in <i>Staphylococcus aureus</i>, it is imperative to develop innovative therapeutic strategies against new targets to reduce selective survival pressures and incidence of resistance. In <i>S. aureus</i>, interbacterial communication relies on a quorum sensing system that regulates gene expression and physiological activities. Here, we identified that Visomitin, an antioxidant small molecule, exhibited bactericidal efficacy against methicillin-resistant <i>S. aureus</i> and its high tolerance phenotypes like intracellular bacteria and persister cells without inducing resistance. Critically, sub-minimal inhibitory concentrations (sub-MICs) of Visomitin could serve as a potent quorum-quencher reducing virulence production (such as haemolysin and staphyloxanthin), along with inhibiting biofilm formation, self-aggregation, and colony spreading of <i>S. aureus</i>. These effects were probably mediated by interfering with the <i>S. aureus</i> accessory gene regulator quorum sensing system. In summary, our findings suggest that Visomitin shows dual antimicrobial effects, including bactericidal effects at the concentrations above MIC and quorum sensing inhibition effects at sub-MICs, which holds promise for treating MRSA-related refractory infections.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2024.2415952\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2415952","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
随着金黄色葡萄球菌对抗生素的耐药性不断增加,当务之急是针对新靶点开发创新的治疗策略,以降低选择性生存压力和耐药性的发生率。在金黄色葡萄球菌中,细菌间的交流依赖于调控基因表达和生理活动的法定量感应系统。在这里,我们发现了一种抗氧化小分子 Visomitin,它对耐甲氧西林金黄色葡萄球菌及其高耐受表型(如细胞内细菌和顽固细胞)具有杀菌效果,而不会诱导耐药性。重要的是,亚微量抑制浓度(sub-MICs)的 Visomitin 可作为一种强效的法定人数拮抗剂,减少毒力产生(如溶血素和短链黄素),同时抑制金黄色葡萄球菌的生物膜形成、自我聚集和菌落扩散。这些作用可能是通过干扰金黄色葡萄球菌附属基因调节器的法定人数感应系统介导的。总之,我们的研究结果表明,Visomitin 具有双重抗菌作用,包括 MIC 以上浓度的杀菌作用和 MIC 以下浓度的法定量感应抑制作用,有望用于治疗与 MRSA 相关的难治性感染。
Bactericidal and anti-quorum sensing activity of repurposing drug Visomitin against Staphylococcus aureus.
With the growing antibiotic resistance in Staphylococcus aureus, it is imperative to develop innovative therapeutic strategies against new targets to reduce selective survival pressures and incidence of resistance. In S. aureus, interbacterial communication relies on a quorum sensing system that regulates gene expression and physiological activities. Here, we identified that Visomitin, an antioxidant small molecule, exhibited bactericidal efficacy against methicillin-resistant S. aureus and its high tolerance phenotypes like intracellular bacteria and persister cells without inducing resistance. Critically, sub-minimal inhibitory concentrations (sub-MICs) of Visomitin could serve as a potent quorum-quencher reducing virulence production (such as haemolysin and staphyloxanthin), along with inhibiting biofilm formation, self-aggregation, and colony spreading of S. aureus. These effects were probably mediated by interfering with the S. aureus accessory gene regulator quorum sensing system. In summary, our findings suggest that Visomitin shows dual antimicrobial effects, including bactericidal effects at the concentrations above MIC and quorum sensing inhibition effects at sub-MICs, which holds promise for treating MRSA-related refractory infections.
期刊介绍:
Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication.
Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.