Harishchandra S. Nishad, Sachin D. Tejam, Shahshikant P. Patole, Sanjay D. Chakane, Atul C. Chaskar, Pravin S. Walke
{"title":"由 Co3O4 纳米球和 WO3-x 纳米棒组成的异质结构电极在混合水基超级电容器中的卓越稳定性","authors":"Harishchandra S. Nishad, Sachin D. Tejam, Shahshikant P. Patole, Sanjay D. Chakane, Atul C. Chaskar, Pravin S. Walke","doi":"10.1002/est2.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The development of the battery-type electrode for the hybrid supercapacitor is very challenging owing to poor cycle stability. To overcome this problem, heterostructures would be an excellent alternative attributed to the synergetic effect of different materials physical properties, including electrical conductivity, mechanical flexibility, and so forth. Furthermore, heterostructures also offer significant redox reactions on account of more active sites, enhanced charge transfers kinetics via extra electron carriers, and ion diffusion rates, along with improved cyclic stability. Herein, we prepared heterostructures of Co<sub>3</sub>O<sub>4</sub> nanospheres and WO<sub>3−<i>x</i></sub> nanorods via a single-step wet chemical method at a reaction time of 1 h (CoW1) and 6 h (CoW2). The electrochemical investigations reveal improved specific capacitance of CoW1 (157 F g<sup>−1</sup>) than CoW2 (188 F g<sup>−1</sup>) at 0.3 A g<sup>−1</sup>. Furthermore, an aqueous hybrid supercapacitor (AHS) shows the specific capacitance of 38 F g<sup>−1</sup> at 1 A g<sup>−1</sup>. Notably, it exhibits a remarkable specific capacity retention of 93% up to 10 000 cycles at 100 mV s<sup>−1</sup>. Thus, CoW2 have great potential of electrode materials for the next-generation energy storage devices.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior Stability of Heterostructure Electrode Composed of Co3O4 Nanospheres and WO3−x Nanorods in Hybrid Aqueous Supercapacitors\",\"authors\":\"Harishchandra S. Nishad, Sachin D. Tejam, Shahshikant P. Patole, Sanjay D. Chakane, Atul C. Chaskar, Pravin S. Walke\",\"doi\":\"10.1002/est2.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The development of the battery-type electrode for the hybrid supercapacitor is very challenging owing to poor cycle stability. To overcome this problem, heterostructures would be an excellent alternative attributed to the synergetic effect of different materials physical properties, including electrical conductivity, mechanical flexibility, and so forth. Furthermore, heterostructures also offer significant redox reactions on account of more active sites, enhanced charge transfers kinetics via extra electron carriers, and ion diffusion rates, along with improved cyclic stability. Herein, we prepared heterostructures of Co<sub>3</sub>O<sub>4</sub> nanospheres and WO<sub>3−<i>x</i></sub> nanorods via a single-step wet chemical method at a reaction time of 1 h (CoW1) and 6 h (CoW2). The electrochemical investigations reveal improved specific capacitance of CoW1 (157 F g<sup>−1</sup>) than CoW2 (188 F g<sup>−1</sup>) at 0.3 A g<sup>−1</sup>. Furthermore, an aqueous hybrid supercapacitor (AHS) shows the specific capacitance of 38 F g<sup>−1</sup> at 1 A g<sup>−1</sup>. Notably, it exhibits a remarkable specific capacity retention of 93% up to 10 000 cycles at 100 mV s<sup>−1</sup>. Thus, CoW2 have great potential of electrode materials for the next-generation energy storage devices.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于循环稳定性差,为混合超级电容器开发电池型电极极具挑战性。为了克服这一问题,异质结构将是一个很好的选择,因为它具有不同材料物理特性的协同效应,包括导电性、机械灵活性等。此外,异质结构还能提供显著的氧化还原反应,因为它具有更多的活性位点,通过额外的电子载体和离子扩散速率增强了电荷转移动力学,同时提高了循环稳定性。在此,我们通过一步湿化学法制备了 Co3O4 纳米球和 WO3-x 纳米棒的异质结构,反应时间分别为 1 小时(CoW1)和 6 小时(CoW2)。电化学研究表明,在 0.3 A g-1 的条件下,CoW1 的比电容(157 F g-1)比 CoW2(188 F g-1)更高。此外,水混合超级电容器(AHS)在 1 A g-1 时的比电容为 38 F g-1。值得注意的是,在 100 mV s-1 的条件下,它的比容量保持率高达 93%,可循环使用 10 000 次。因此,CoW2 极有可能成为下一代储能设备的电极材料。
Superior Stability of Heterostructure Electrode Composed of Co3O4 Nanospheres and WO3−x Nanorods in Hybrid Aqueous Supercapacitors
The development of the battery-type electrode for the hybrid supercapacitor is very challenging owing to poor cycle stability. To overcome this problem, heterostructures would be an excellent alternative attributed to the synergetic effect of different materials physical properties, including electrical conductivity, mechanical flexibility, and so forth. Furthermore, heterostructures also offer significant redox reactions on account of more active sites, enhanced charge transfers kinetics via extra electron carriers, and ion diffusion rates, along with improved cyclic stability. Herein, we prepared heterostructures of Co3O4 nanospheres and WO3−x nanorods via a single-step wet chemical method at a reaction time of 1 h (CoW1) and 6 h (CoW2). The electrochemical investigations reveal improved specific capacitance of CoW1 (157 F g−1) than CoW2 (188 F g−1) at 0.3 A g−1. Furthermore, an aqueous hybrid supercapacitor (AHS) shows the specific capacitance of 38 F g−1 at 1 A g−1. Notably, it exhibits a remarkable specific capacity retention of 93% up to 10 000 cycles at 100 mV s−1. Thus, CoW2 have great potential of electrode materials for the next-generation energy storage devices.