{"title":"长波校正对利用 SWOT 研究巴氏潮汐的意义","authors":"Edward D. Zaron","doi":"10.1029/2024EA003677","DOIUrl":null,"url":null,"abstract":"<p>The long-wavelength correction (LWC) of SWOT data is intended to reduce errors related to the stability of the SWOT antenna and its attitude in orbit. The algorithms used to compute the LWC utilize SWOT KaRIn sea surface-height (SSH) measurements and additional data, and the LWC may absorb geophysical SSH into the correction. Different LWC algorithms are used on the L2 and L3 SWOT products, which are analyzed here during the 1 day repeat (Cal/Val) mission phase lasting approximately 100 days. During this mission phase the SSH anomaly (SSHA) computed using the L3 LWC is much more realistic than the L2 LWC, as shown here by comparing spatial statistics of the L2 and L3 products. The L3 LWC algorithm is nonlinear insofar as it depends on second-order statistics of the SSHA and multi-satellite SSHA differences, making it difficult to quantify the extent to which it could absorb baroclinic tidal signals. To overcome this difficulty, a proxy L3 LWC algorithm is developed which mimics the L3 LWC but is strictly linear in the SSHA. The proxy LWC is applied to both idealized waveforms and to the predicted internal tide available on the products, and it is found to absorb 1% or less of the signal variance, leading to corresponding pointwise errors of 10% or less. Because the errors are at longer wavelengths and are significantly smaller amplitude than internal tide signals, the LWC impact on the measurement and interpretation of internal tides with SWOT is expected to be negligible in most applications.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003677","citationCount":"0","resultStr":"{\"title\":\"The Significance of the Long-Wavelength Correction for Studies of Baroclinic Tides With SWOT\",\"authors\":\"Edward D. Zaron\",\"doi\":\"10.1029/2024EA003677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The long-wavelength correction (LWC) of SWOT data is intended to reduce errors related to the stability of the SWOT antenna and its attitude in orbit. The algorithms used to compute the LWC utilize SWOT KaRIn sea surface-height (SSH) measurements and additional data, and the LWC may absorb geophysical SSH into the correction. Different LWC algorithms are used on the L2 and L3 SWOT products, which are analyzed here during the 1 day repeat (Cal/Val) mission phase lasting approximately 100 days. During this mission phase the SSH anomaly (SSHA) computed using the L3 LWC is much more realistic than the L2 LWC, as shown here by comparing spatial statistics of the L2 and L3 products. The L3 LWC algorithm is nonlinear insofar as it depends on second-order statistics of the SSHA and multi-satellite SSHA differences, making it difficult to quantify the extent to which it could absorb baroclinic tidal signals. To overcome this difficulty, a proxy L3 LWC algorithm is developed which mimics the L3 LWC but is strictly linear in the SSHA. The proxy LWC is applied to both idealized waveforms and to the predicted internal tide available on the products, and it is found to absorb 1% or less of the signal variance, leading to corresponding pointwise errors of 10% or less. Because the errors are at longer wavelengths and are significantly smaller amplitude than internal tide signals, the LWC impact on the measurement and interpretation of internal tides with SWOT is expected to be negligible in most applications.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003677\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003677\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003677","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Significance of the Long-Wavelength Correction for Studies of Baroclinic Tides With SWOT
The long-wavelength correction (LWC) of SWOT data is intended to reduce errors related to the stability of the SWOT antenna and its attitude in orbit. The algorithms used to compute the LWC utilize SWOT KaRIn sea surface-height (SSH) measurements and additional data, and the LWC may absorb geophysical SSH into the correction. Different LWC algorithms are used on the L2 and L3 SWOT products, which are analyzed here during the 1 day repeat (Cal/Val) mission phase lasting approximately 100 days. During this mission phase the SSH anomaly (SSHA) computed using the L3 LWC is much more realistic than the L2 LWC, as shown here by comparing spatial statistics of the L2 and L3 products. The L3 LWC algorithm is nonlinear insofar as it depends on second-order statistics of the SSHA and multi-satellite SSHA differences, making it difficult to quantify the extent to which it could absorb baroclinic tidal signals. To overcome this difficulty, a proxy L3 LWC algorithm is developed which mimics the L3 LWC but is strictly linear in the SSHA. The proxy LWC is applied to both idealized waveforms and to the predicted internal tide available on the products, and it is found to absorb 1% or less of the signal variance, leading to corresponding pointwise errors of 10% or less. Because the errors are at longer wavelengths and are significantly smaller amplitude than internal tide signals, the LWC impact on the measurement and interpretation of internal tides with SWOT is expected to be negligible in most applications.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.