{"title":"阳离子连接引导层状混合过氧化物中量子阱的形成","authors":"Kasra Darabi, Mihirsinh Chauhan, Boyu Guo, Jiantao Wang, Dovletgeldi Seyitliyev, Fazel Bateni, Tonghui Wang, Masoud Ghasemi, Laine Taussig, Nathan Woodward, Xiang-Bin Han, Evgeny O. Danilov, Ruipeng Li, Xiaotong Li, Milad Abolhasani, Kenan Gundogdu, Aram Amassian","doi":"10.1016/j.matt.2024.09.010","DOIUrl":null,"url":null,"abstract":"Layered hybrid perovskites (LHPs) have emerged as promising reduced-dimensional semiconductors for next-generation photonic and energy applications, wherein controlling the size, orientation, and distribution of quantum wells (QWs) is of paramount importance. Here, we reveal that bulky molecular spacers act as crystal-terminating ligands to form colloidal nanoplatelets (NPLs) during early stages of LHP formation. NPLs template the crystallization of LHPs. Using multi-modal diagnostics, we prove that NPLs ripen and grow, playing a decisive role in the time evolution of QW size, population distribution, and orientation. We demonstrate antisolvent drip interrupts NPL ripening and thereby controls QW orientation, population, and energy cascades within LHP films. Using this approach, we achieve low-threshold amplified emission (AE) with remarkable reproducibility. We further introduce synthesized NPLs in the antisolvent step of 3D perovskites to control facet orientation and achieve enhanced efficiency and stability in wide-bandgap solar-cell devices compared to untextured controls.","PeriodicalId":388,"journal":{"name":"Matter","volume":"26 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic ligation guides quantum-well formation in layered hybrid perovskites\",\"authors\":\"Kasra Darabi, Mihirsinh Chauhan, Boyu Guo, Jiantao Wang, Dovletgeldi Seyitliyev, Fazel Bateni, Tonghui Wang, Masoud Ghasemi, Laine Taussig, Nathan Woodward, Xiang-Bin Han, Evgeny O. Danilov, Ruipeng Li, Xiaotong Li, Milad Abolhasani, Kenan Gundogdu, Aram Amassian\",\"doi\":\"10.1016/j.matt.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered hybrid perovskites (LHPs) have emerged as promising reduced-dimensional semiconductors for next-generation photonic and energy applications, wherein controlling the size, orientation, and distribution of quantum wells (QWs) is of paramount importance. Here, we reveal that bulky molecular spacers act as crystal-terminating ligands to form colloidal nanoplatelets (NPLs) during early stages of LHP formation. NPLs template the crystallization of LHPs. Using multi-modal diagnostics, we prove that NPLs ripen and grow, playing a decisive role in the time evolution of QW size, population distribution, and orientation. We demonstrate antisolvent drip interrupts NPL ripening and thereby controls QW orientation, population, and energy cascades within LHP films. Using this approach, we achieve low-threshold amplified emission (AE) with remarkable reproducibility. We further introduce synthesized NPLs in the antisolvent step of 3D perovskites to control facet orientation and achieve enhanced efficiency and stability in wide-bandgap solar-cell devices compared to untextured controls.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.09.010\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.09.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cationic ligation guides quantum-well formation in layered hybrid perovskites
Layered hybrid perovskites (LHPs) have emerged as promising reduced-dimensional semiconductors for next-generation photonic and energy applications, wherein controlling the size, orientation, and distribution of quantum wells (QWs) is of paramount importance. Here, we reveal that bulky molecular spacers act as crystal-terminating ligands to form colloidal nanoplatelets (NPLs) during early stages of LHP formation. NPLs template the crystallization of LHPs. Using multi-modal diagnostics, we prove that NPLs ripen and grow, playing a decisive role in the time evolution of QW size, population distribution, and orientation. We demonstrate antisolvent drip interrupts NPL ripening and thereby controls QW orientation, population, and energy cascades within LHP films. Using this approach, we achieve low-threshold amplified emission (AE) with remarkable reproducibility. We further introduce synthesized NPLs in the antisolvent step of 3D perovskites to control facet orientation and achieve enhanced efficiency and stability in wide-bandgap solar-cell devices compared to untextured controls.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.