基于算子学习变换器和有限元法的深度多物理场求解器

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-09-19 DOI:10.1109/JMMCT.2024.3463748
Yinpeng Wang
{"title":"基于算子学习变换器和有限元法的深度多物理场求解器","authors":"Yinpeng Wang","doi":"10.1109/JMMCT.2024.3463748","DOIUrl":null,"url":null,"abstract":"The accurate acquisition of unknown multiphysics fields in specified regions is vital for industrial production. Traditional computational approaches often require dense mesh generation to achieve precise numerical results, leading to substantial computational resource consumption and extended processing times. However, recent advancements in deep learning (DL) have introduced alternative solutions to computational physics problems. This paper presents a novel multiphysics field solver that integrates operator learning with classical finite element methods (FEM). The overall structure of the framework is a Transformer based on the attention mechanism, with a loss function incorporating physical constraints. The network takes the result of a coarse grid finite element calculation as input, while the output target is the value of a dense grid computation. Compared to traditional DL frameworks, the proposed architecture consistently maintains low error rates across a range of input resolutions. Additionally, the high efficiency of graphics processing units (GPUs) enables fully trained networks to generate solutions in quasi-real time, demonstrating significant potential for practical applications.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"341-352"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Multiphysics Fields Solver Established on Operator Learning Transformer and Finite Element Method\",\"authors\":\"Yinpeng Wang\",\"doi\":\"10.1109/JMMCT.2024.3463748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate acquisition of unknown multiphysics fields in specified regions is vital for industrial production. Traditional computational approaches often require dense mesh generation to achieve precise numerical results, leading to substantial computational resource consumption and extended processing times. However, recent advancements in deep learning (DL) have introduced alternative solutions to computational physics problems. This paper presents a novel multiphysics field solver that integrates operator learning with classical finite element methods (FEM). The overall structure of the framework is a Transformer based on the attention mechanism, with a loss function incorporating physical constraints. The network takes the result of a coarse grid finite element calculation as input, while the output target is the value of a dense grid computation. Compared to traditional DL frameworks, the proposed architecture consistently maintains low error rates across a range of input resolutions. Additionally, the high efficiency of graphics processing units (GPUs) enables fully trained networks to generate solutions in quasi-real time, demonstrating significant potential for practical applications.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"341-352\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684148/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684148/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

精确获取指定区域内的未知多物理场对工业生产至关重要。传统的计算方法通常需要生成密集网格才能获得精确的数值结果,从而导致大量计算资源消耗和处理时间延长。然而,深度学习(DL)的最新进展为计算物理问题引入了替代解决方案。本文介绍了一种新型多物理场求解器,它将算子学习与经典有限元方法(FEM)融为一体。该框架的整体结构是一个基于注意力机制的变换器,其损失函数包含物理约束。该网络将粗网格有限元计算的结果作为输入,而输出目标则是密集网格计算的值。与传统的 DL 框架相比,所提出的架构在各种输入分辨率下都能保持较低的错误率。此外,图形处理器(GPU)的高效率使训练有素的网络能在准实时的时间内生成解决方案,为实际应用展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Multiphysics Fields Solver Established on Operator Learning Transformer and Finite Element Method
The accurate acquisition of unknown multiphysics fields in specified regions is vital for industrial production. Traditional computational approaches often require dense mesh generation to achieve precise numerical results, leading to substantial computational resource consumption and extended processing times. However, recent advancements in deep learning (DL) have introduced alternative solutions to computational physics problems. This paper presents a novel multiphysics field solver that integrates operator learning with classical finite element methods (FEM). The overall structure of the framework is a Transformer based on the attention mechanism, with a loss function incorporating physical constraints. The network takes the result of a coarse grid finite element calculation as input, while the output target is the value of a dense grid computation. Compared to traditional DL frameworks, the proposed architecture consistently maintains low error rates across a range of input resolutions. Additionally, the high efficiency of graphics processing units (GPUs) enables fully trained networks to generate solutions in quasi-real time, demonstrating significant potential for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1